
@adamwarski#Voxxed

Evaluating persistent, replicated
message queues

Adam Warski
SoftwareMill

@adamwarski

About me

❖ coder @

❖ open-source: Supler, MacWire, Envers, …

❖ long time interest in message queues

❖ ElasticMQ - local SQS implementation

❖ http://www.warski.org / @adamwarski

http://www.warski.org

@adamwarski

Why message queues?

❖ Reactive Manifesto: message
driven

❖ Microservices integration:

❖ REST

❖ MQ

❖ Any kind of asynchronous
processing

@adamwarski

Jobs? messages? tasks?

❖ Similar concepts:

❖ message queue

❖ job queue

❖ asynchronous task

@adamwarski

Exactly-once

❖ Everybody would like that

❖ Hard to achieve

❖ needs distributed transactions

❖ Systems advertised as exactly-once are usually not

@adamwarski

At-[least | most]-once

❖ “Almost exactly once”

❖ Least/most: tradeoffs

❖ Message acknowledgments

❖ Idempotent processing

@adamwarski

Why persistent & replicated?

❖ Reactive manifesto: responsive, resilient

❖ We want to be sure no messages are lost

❖ Brings new problems

❖ But, “it depends”

@adamwarski

Scenario: send
❖ Client wants to send a message

❖ If the request completes, we want to be sure that the
message will be eventually processed

❖ Making sure by:

❖ writing to disk

❖ replicating

@adamwarski

Scenario: receive
❖ At-least-once-delivery

❖ Message is received from queue

❖ Processed

❖ And acknowledged (deleted)

@adamwarski

Systems under test

❖ RabbitMQ

❖ HornetQ

❖ Kafka

❖ SQS

❖ MongoDB

❖ (EventStore)

@adamwarski

What is measured

❖ Number of messages per second sent & received

❖ Msg size: 100 bytes

❖ Other interesting metrics, not covered:

❖ Send latency

❖ Total msg processing time

❖ Resource consumption at a given msg rate

@adamwarski

Testing methodology
❖ Message broker: 3 nodes

❖ 1-4 nodes sending, 1-4 nodes receiving

❖ Each sender/receiver node: 1-25 threads

❖ Each thread:

❖ sending messages in batches, random size 1-10
(1-100/1-1000)

❖ receiving messages in batches, acknowledging

@adamwarski

Servers

❖ Single EC2 availability zone

❖ -> fast internal network

❖ m3.large

❖ 2 CPUs

❖ 7.5 GiB RAM

❖ 32GB SSD storage

@adamwarski

❖ RedHat/JBoss project

❖ multi-protocol, embeddable, high-performance,
asynchronous messaging system

❖ JMS, STOMP, AMQP, native

@adamwarski

HornetQ replication

❖ Live-backup pairs

❖ Data replicated to one node

❖ Fail-over:

❖ manual, or

❖ automatic, but: split-brain

@adamwarski

HornetQ replication

❖ Once a transaction commits, it is written to the primary
node’s journal

❖ Replication is asynchronous

@adamwarski

HornetQ operations

❖ Send: transactions

❖ Receive:

❖ one message at a time

❖ blocking confirmations turned off

@adamwarski

HornetQ results

Threads Nodes Send
msgs/s

Receive
msgs/s

1 1 1 108 1 106

25 1 12 791 12 802

1 4 3 768 3 627

25 4 17 402 16 160

@adamwarski

HornetQ notes

❖ Poor documentation of replication guarantees

❖ Poor documentation on network failure behaviours

❖ Very high load: primary node considered dead even
though working

@adamwarski

❖ Leading open-source messaging system

❖ AMQP

❖ Very rich messaging options

@adamwarski

RabbitMQ replication

❖ 3 nodes

❖ Using publisher acknowledgments

❖ AMQP extension

❖ cluster-wide

❖ Does not cope well with network partitions

❖ documented!

@adamwarski

RabbitMQ operations

❖ Sending a batch, waiting for confirmations

❖ Receiving batch, acknowledging one-by-one

❖ Redelivery: connection broken

@adamwarski

RabbitMQ results

@adamwarski

RabbitMQ results

Threads Nodes Send
msgs/s

Receive
msgs/s

1 1 1 829 1 811

1 4 3 158 3 124

Batch 100

Threads Nodes Send
msgs/s

Receive
msgs/s

1 1 3 181 2 549

1 4 3 566 3 533

Batch 1000

@adamwarski

RabbitMQ notes

❖ Publisher confirms seems to be killing it

❖ Documented network partition behaviour

❖ Shovel/Federation plugins

@adamwarski

 SQS

❖ As-a-service

❖ Part of Amazon’s Web Services

❖ Simple interface

❖ Priced basing on load

❖ Easy to set up

@adamwarski

SQS replication

❖ We don’t really know ;)

❖ If a send completes, the message is replicated to
multiple nodes

❖ Unfair competition: might use multiple replicated
clusters with routing/load-balancing clients

@adamwarski

SQS operations

❖ Sending messages in batches

❖ Receiving messages in batches (long polling).

❖ Redelivery: after timeout (message blocked for some
time)

❖ Deleting (acknowledging) in batches

@adamwarski

SQS results

@adamwarski

SQS results

@adamwarski

SQS notes

❖ Can re-deliver even if no failure in the client

❖ failure in SQS

@adamwarski

❖ Different approach to messaging

❖ Streaming publish-subscribe system

❖ Topics with multiple partitions

❖ more partitions -> more concurrency

@adamwarski

Point-to-point messaging in Kafka

❖ Messages in each partition are processed in-order

❖ Consumers should consume at the same speed

❖ Messages can’t be selectively acknowledged, only “up
to offset”

❖ No “advanced” messaging options

@adamwarski

Point-to-point messaging in Kafka

@adamwarski

Kafka replication

❖ Multiple nodes (here: 3)

❖ Replication factor (here: 3)

❖ Uses Zookeeper for coordination

@adamwarski

Kafka operations

❖ Send: blocks until accepted by partition leader, no
guarantees for replication

❖ Consumer offsets: committed every 10 seconds
manually; during that time, message receiving is
blocked

❖ Redelivery: starting from last known stream position

@adamwarski

Kafka results

Threads Nodes Send
msgs/s

Receive
msgs/s

1 1 2 558 2 561

25 1 29 691 27 093

25 4 33 587 31 891

@adamwarski

Kafka notes

❖ Scaling potential:

❖ adding more nodes

❖ increasing number of partitions

@adamwarski

❖ Not really a queue - I know ;)

❖ Very simple replication setup

❖ Document-level atomic operations: find-and-modify

@adamwarski

Mongo replication

❖ 3 nodes

❖ Controllable guarantees:

❖ WriteConcern.ACKNOWLEDGED

❖ WriteConcern.REPLICA_ACKNOWLEDGED
(majority)

@adamwarski

Mongo operations

❖ Sending: in batches, waiting until the DB write
completes

❖ Receiving: find-and-modify, one-by-one

❖ Redelivery: after timeout (message blocked for some
time)

❖ Deleting: in batches, DB delete

@adamwarski

Mongo results

Threads Nodes Send
msgs/s

Receive
msgs/s

1 1 7 968 1 914

25 1 10 903 3 266

“Safe”

Threads Nodes Send
msgs/s

Receive
msgs/s

1 1 1 489 1 483

25 2 6 550 2 841

“Replica safe”

@adamwarski

❖ Primary use-case: event sourcing

❖ Competing consumers: servers keeps track

❖ Hybrid acknowledgment model:

❖ selective

❖ with checkpoints

❖ Message time-outs

@adamwarski

Summing up

❖ SQS: good performance, easy setup

❖ Mongo: no need to maintain separate system

❖ RabbitMQ: rich messaging options, good persistence

❖ HornetQ: good performance, many interfaces

❖ Kafka: best performance and scalability

@adamwarski

Summary - batch 10

@adamwarski

Summary - batch 100

@adamwarski

Thanks!

❖ Questions?

Scalar
11/04/2015

