Evaluating persistent, replicated

message queues

Adam Warski
SoftwareMill

VIENNA

0
<
-
-
Y.

R/
%®

About me

coder @ 1" ljlll. SOFTWAREMILL
@peisseliice: Slipler, MacWire , EflvVers,

long time interest in message queues

* ElasticMQ - local SQS implementation

http: / /www.warski.org /| @adamwarski

’ @adamwarski

http://www.warski.org

Why message queues?

“ Reactive Manifesto: message
driven

* Microservices integration:
+ REST
* MQ

Any kind of asynchronous

00 (< D reactivemanifesto.org) o 0o » l =T
\ N A r
The Reactive Manifesto
./ |\ SO LIVE VvV ICA ‘ \/\,‘ W/
Publis} 1 Sepler mber 16 2014. (v2.0) I
3
e < tn = reactivemanifesto.org t =

S & |+

Message Driven: Reactive Systems rely on asynchronous message-passing to
establish a boundary between components that ensures loose coupling,
isolation, location transparency, and provides the means to delegate errors as
messages. Employing explicit message-passing enables load management,
elasticity, and flow control by shaping and monitoring the message queues in
the system and applying back-pressure when necessary. Location transparent
messaging as a means of communication makes it possible for the
management of failure to work with the same constructs and semantics
across a cluster or within a single host. Non-blocking communication allows
recipients to only consume resources while active, leading to less system
overhead.

Responsive

——

processing

|
1
— —

@adamwarski

Jobs? messages? tasks?

Similar concepts:

“ message queue
“ job queue

* asynchronous task

, @adamwarski

Exactly-once

* Everybody would like that
+ Hard to achieve
+ needs distributed transactions

“ Systems advertised as exactly-once are usually not

, @adamwarski

At-|least | most|-once

« “Almost exactly once”

+ Least/most: tradeoffs

“ Message acknowledgments

* Idempotent processing

, @adamwarski

Why persistent & replicated?

* Reactive manifesto: responsive, resilient

* We want to be sure no messages are lost
“ Brings new problems

=Bt 1fdepenclss

, @adamwarski

Scenario: send

* Client wants to send a message

« If the request completes, we want to be sure that the
message will be eventually processed

* Making sure by:

“ writing to disk

|
1. send message

/N Database
| Message 2. persist

: Queue ——
H ' N /

3. respond to request
I

“ replicating

, @adamwarski

Scenario: receive

“ At-least-once-delivery

“ Message is received from queue

+ Processed

* And acknowledged (deleted)

Client

1
1. receive messages

/-:'\ Database
" Message 2. block

1

:

1

Queue

4. delete

3. acknowledge
1

’ @adamwarski

Systems under test

+ RabbitMQ

+“ HornetQ

« Kafka

* 5Q8S

+ MongoDB

* (EventStore)

, @adamwarski

What 1s measured

* Number of messages per second sent & received

“ Msg size: 100 bytes

« QOther interesting metrics, not covered:
* Send latency
* Total msg processing time

* Resource consumption at a given msg rate

’ @adamwarski

T'esting methodology

“ Message broker: 3 nodes

“ 1-4 nodes sending, 1-4 nodes receiving

+ Each sender/receiver node; 1-25 threads

+ Each thread:

“ sending messages in batches, random size 1-10
(1-100/1-1000)

* receiving messages in batches, acknowledging

’ @adamwarski

Servers

Single EC2 availability zone

-> fast internal network

m3.large
e amaZon
7.5 GiB RAM Web Serwcesw
32GB 55D storage

, @adamwarski

§ HornetQQ

+ RedHat/]JBoss project

« multi-protocol, embeddable, high-performance,
asynchronous messaging system

+ JMS, STOMP, AMQP, native

, @adamwarski

Hornet() replication

“ Live-backup pairs

“ Data replicated to one node

+ Fail-over:

+ manual, or

“ automatic, but: split-brain

’ @adamwarski

Hornet() replication

* Once a transaction commits, it is written to the primary
node’s journal

« Replication is asynchronous

, @adamwarski

Hornet() operations

+ Send: transactions

+ Recelve:

* one message at a time

“ blocking confirmations turned oft

, @adamwarski

Hornet() results

Send Receive
msgs/s msgs/s

Threads Nodes

1 1 1108 1106
25 1 522751 12 802
I 4 3768 SHE.
25 4 17402 16 160

’ @adamwarski

Hornet() notes

* Poor documentation of replication guarantees

+ Poor documentation on network failure behaviours

* Very high load: primary node considered dead even
though working

’ @adamwarski

n [Y 2
n:::I| "::: X J' | ‘|'l
By Rabbit VIO

“ Leading open-source messaging system
+ AMQP

* Very rich messaging options

’ @adamwarski

RabbitM() replication

+ 3 nodes

+ Using publisher acknowledgments

+ AMQP extension

+ cluster-wide

* Does not cope well with network partitions

+ documented!

, @adamwarski

RabbitM() operations

* Sending a batch, waiting for confirmations
« Receiving batch, acknowledging one-by-one

* Redelivery: connection broken

, @adamwarski

RabbitM() results

msgs/second

1,800
1,600
1,400
1,200
1,000
800
600
400
200
00

e=fmeTotal send

s Total receive

I I I

2 4 6

number of nodes

10

’ @adamwarski

RabbitM() results

Send Receive Send Receive

Threads Nodes Threads Nodes
msgs/s msgs/s msgs/s msgs/s

1 1 1 829 1 811 1 1 3181 2 549
i} 4 3158 3124 1| 4 3 566 3533
Batch 100 Batch 1000

, @adamwarski

RabbitM() notes

* Publisher confirms seems to be killing it
* Documented network partition behaviour

* Shovel / Federation plugins

, @adamwarski

118 sos

As-a-service

Part of Amazon’s Web Services
Simple intertace

Priced basing on load

Easy to set up

’ @adamwarski

SOS replication

* We don’t really know ;)

« If a send completes, the message is replicated to
multiple nodes

« Unfair competition: might use multiple replicated
clusters with routing/load-balancing clients

’ @adamwarski

S0)S operations

* Sending messages in batches
* Receiving messages in batches (long polling).

« Redelivery: after timeout (message blocked for some
time)

* Deleting (acknowledging) in batches

’ @adamwarski

SOS results

16,000

14,000

12,000

10,000

8,000
ssfmeSender total

msgs/second

6,000 ‘
emsReceiver total

4,000

2,000

00

number of threads

, @adamwarski

SOS results

msgs/second

70,000
60,000
50,000
40,000
30,000
20,000
10,000

00

s=fmmSender total

s Receiver total

I I I I I

2 4 6 8 10

number of nodes

’ @adamwarski

SOS notes

+ Can re-deliver even if no failure in the client

+ failure in SQS

, @adamwarski

Apache Kafka

A high-throughput distributed messaging system.

« Different approach to messaging
* Streaming publish-subscribe system
« Topics with multiple partitions

* more partitions -> more concurrency

' @adamwarski

Point-to-point messaging in Kafka

* Messages in each partition are processed in-order
* Consumers should consume at the same speed

* Messages can’t be selectively acknowledged, only “up
to oftset”

“ No “advanced” messaging options

, @adamwarski

Pomt—to—pomt messagmg in Kaﬂia

Host 1

7~

Host 2

Host 3

Cllent 1 f

offsets — .

Zookeeper/Kafka

e ey Cllent 2

, @adamwarski

Kafka replication

« Multiple nodes (here: 3)
« Replication factor (here: 3)

« Uses Zookeeper for coordination

, @adamwarski

Kaftka operations

Send: blocks until accepted by partition leader, no
guarantees for replication

“ Consumer offsets: committed every 10 seconds
manually; during that time, message receiving is

blocked

“ Redelivery: starting from last known stream position

, @adamwarski

Kaftka results

Send Receive
msgs/s msgs/s

Threads Nodes

1 1 25968 2 561
25 Il ZOEOTHI S a00S
2 4 33587 31891

, @adamwarski

Kafka notes

“ Scaling potential:
* adding more nodes

“ increasing number of partitions

, @adamwarski

. mongoDB

* Not really a queue - [know ;)
* Very simple replication setup

* Document-level atomic operations: find-and-modity

, @adamwarski

Mongo replication

+ 3 nodes

“ Controllable guarantees:

* WriteConcern. ACKNOWLEDGED

¢ WriteConcern.REPLICA. ACKNOWLEDGED
(majority)

, @adamwarski

Mongo operations

* Sending: in batches, waiting until the DB write
completes

* Receiving: find-and-modity, one-by-one

« Redelivery: after timeout (message blocked for some
time)

* Deleting: in batches, DB delete

’ @adamwarski

Mongo results

Send Receive
msgs/s msgs/s

Send Receive
msgs/s msgs/s

Threads Nodes Threads Nodes

1 1 7 968 1914 1 I 1489 1483
25 1 10 903 3 266 25 2 6 550 2 841
SohE “Replica sate”

, @adamwarski

() EVENT STORE

* Primary use-case: event sourcing

« Competing consumers: servers keeps track
* Hybrid acknowledgment model:

+ selective

* with checkpoints

* Message time-outs

, @adamwarski

Summing up

* §Q8S: good performance, easy setup

* Mongo: no need to maintain separate system

+ RabbitMQ: rich messaging options, good persistence
* HornetQ: good performance, many interfaces

« Kafka: best performance and scalability

’ @adamwarski

Summary - batch 10

msgs/second

40,000
35,000
30,000
25,000
20,000
15,000
10,000
5,000
00

“ Send

& Receive

, @adamwarski

Summary - batch 100

msgs/second

100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

0

RabbitMQ-batch100

1

HornetQ-batch100

Kafka-batch100

“ Send

& Receive

, @adamwarski

SCA_LA_.TIMES

Thanks!

Questions?

#ProudOfMyCode

Scalar
11/04 /2015

, @adamwarski

