
{!
 “title”: !

!“Event Streaming & !
Message Queueing !
!with MongoDB”,!

 “event”: “MongoDB Berlin 2013”,!
 “name”: “Adam Warski”,!
 “company”: “SoftwareMill”,!
 “e-mail”: “adam@warski.org”,!
 “twitter”: “@adamwarski”!

}!

About me
•  CTO at SoftwareMill, http://softwaremill.com
•  Programmer
•  Engaged in some open-source projects

o  Hibernate Envers
o  ElasticMQ
o  Veripacks
o  SoftwareMill Bootstrap

•  Blog @ http://www.warski.org/blog
•  Current tech stack:

o  Scala
o  Akka
o  Spray
o  MongoDB

•  Project background
o  High-performance messaging system
o  Accept requests from users
o  Process asynchronously
o  Provide reporting

•  Using Mongo as a queue

•  Using Mongo for Event Streaming in Java

Plan

Mongo Message Queue

•  Persistent messaging
o  Short-lived messages
o  Some may linger for a longer time
o  Messages shouldn’t be lost

•  Fast
o  But not insanely fast
o  Currently we need 1000s msgs / second

•  If needed, possible to scale-up & scale-out

The requirements

•  Send a message (a String)

•  Receive a message, blocking it for x seconds

•  Delete a message

Queue interface

•  Amazon SQS semantics

•  At-least-once delivery guarantee

•  Also check out ElasticMQ, http://elasticmq.org

Sounds familiar?

•  Mongo document structure:
o  _id
o  Message content
o  Next delivery (timestamp)

•  Message send:
o  Insert into collection
o  Next delivery := now
o  Return _id (message id)

•  Message delete:
o  Delete document from collection

How to implement?

•  Message receive:
o  Find-and-modify
o  Find: next delivery must be <= now
o  Modify: next delivery := now + 10 seconds

•  Why does this work?
o  Find-and-modify is crucial
o  Atomic operation

How to implement? (2)

•  Replication OOTB
o  Replica Sets

•  Scaling out
o  Starling/Kestrel model
o  Setup 2 identical replica sets (e.g. 2x3 servers)
o  Send/receive from a random server

Meeting the requirements

•  Good sides:
o  Easy to implement
o  Simple interface
o  Replication

•  Bad sides:
o  Active polling
o  No batching

Good/bad sides

•  Can we tolerate lost messages?

•  Different write concerns during send
o  SAFE
o  REPLICA_SAFE

Write concerns

Mongo Event Streaming

•  System generates a series of events
•  Other components follow the stream
•  Similar to Event Sourcing/CQRS
•  Reading and writing of the events is decoupled
•  Any following component may die & catch up
•  Bursts of event activity don’t cause an overall

slowdown

General idea

•  Fast event writing
o  again, 1000s per second

•  Main source of truth in the system
•  Stream the events

o  as they are written

o  in batches
o  write reports to SQL DB

•  Replicate data
•  Store data up to Y GB

o  prevent lack of disk space

The requirements

•  Capped collection
o  By definition, size-constrained
o  We get a circular buffer for events

•  Replicated
o  Hence an index on _id is mandatory
o  Until 2.2, capped collections didn’t have an _id index by default

The collection

•  Insert

•  Write concerns – how tolerant we are of event loss

•  Events should be immutable
o  Nice (Java) code
o  Event sinks wouldn’t know when events get updated
o  Changing document size – moving blocks on disk
o  Not possible in a capped collection

Writing events

•  There may be multiple readers

•  We want to get new events as they come in
o  But without active polling, if possible

•  Tailable cursors are the answer
o  Need to provide a starting point – last read event
o  Will optionally block if no data is available
o  Can’t be a TTL collection

•  The reader must store the last read event id
o  Transactions can be useful here

Reading events

Reading events (Java)
DBObject query = lastReceivedEventId.isPresent()!
 ? BasicDBObjectBuilder.start("_id", BasicDBObjectBuilder!
 .start("$gte", lookFrom(lastReceivedEventId.get()))!

! !.get())!
 .get()!
 : null;!
 !
DBObject sortBy = BasicDBObjectBuilder.start(!
 "$natural", 1).get();!
 !
DBCollection collection = ... // must be a capped collection!
DBCursor cursor = collection!
 .find(query)!
 .sort(sortBy)!
 .addOption(Bytes.QUERYOPTION_TAILABLE)!
 .addOption(Bytes.QUERYOPTION_AWAITDATA);!

•  Note the $gte!
o  Skip events until the last received event is found
o  Looking from … e.g. 10 minutes before the last received event
o  Cannot query for “documents created after a given document”!

•  We get a Java Iterator!

•  Data from Mongo is received in batches
o  Implemented by the Java driver
o  Only some calls to hasNext()/next() will cause network I/O

•  The potentially blocking call is hasNext()!

Reading events (Java)

•  To get events in batches without delays, we need
an intermediate queue

•  Two threads
o  One reading from Mongo
o  Second reading from the queue and processing

•  E.g. a LinkedBlockingQueue!
o  Has a size limit
o  When reading, first we do a blocking poll()!
o  Then drain the queue

Intermediate queue

Intermediate queue

•  Maybe, in the future
o  If performance requirements rise

•  The components are very easy to replace
o  If you write nice code, that is ;)

•  Simplified setup & deployment
o  Both local, and on production

•  Fewer external components
•  Focus on the business problem, not on the

infrastructure
o  As always, a question of balance

Use dedicated components?

Blog: http://www.warski.org/blog

E-mail: adam@warski.org

Twitter: @adamwarski

Thank you!

