
THE ORIGINS OF FREE
Adam Warski, SoftwareMill

10/2/2017, LambdaDays

@adamwarski, SoftwareMill, LambdaDays 2017

THE PLAN

➤ Why bother?

➤ Universal algebra

➤ Free algebras

➤ The meaning of life free

➤ Monads & free monads

➤ Free monads in Haskell, Cats and Scalaz

➤ It’s simpler than it sounds

@adamwarski, SoftwareMill, LambdaDays 2017

WHY BOTHER WITH FREE?

➤ Define a composable program

➤ Using high-level custom instructions

➤ Run it in context later, given instruction interpretation

def issueCreditCard(u: UserId): Free[BankOps, CreditLimit] = for {  
 user <- LookupUserData(u).liftFree  
 otherCredits <- FetchOtherCredits(user).liftFree  
 val limit = calculateLimit(user, otherCredits)  
 creditCard <- IssueNewCard(user, limit).liftFree  
 _ <- SendEmail(user.email, cardIssuedEmail(user, limit)).liftFree  
} yield limit

@adamwarski, SoftwareMill, LambdaDays 2017

WHY BOTHER WITH FREE?

def issueCreditCard(u: UserId): Free[BankOps, CreditLimit] = for {  
 user <- LookupUserData(u).liftFree  
 otherCredits <- FetchOtherCredits(user).liftFree  
 val limit = calculateLimit(user, otherCredits)  
 creditCard <- IssueNewCard(user, limit).liftFree  
 _ <- SendEmail(user.email, cardIssuedEmail(user, limit)).liftFree  
} yield limit

val productionInterpreter: BankOp ~> Future = {  
 override def apply[A](bo: BankOp[A]): Future[A] = bo match {  
 case LookupUserData(u) => oracleDB2dao.lookupUser(u)  
 case FetchOtherCredits(user) =>  
 legacySoapSystem.fetchCredits(user)  
 // …  
 }  
}

@adamwarski, SoftwareMill, LambdaDays 2017

WHY BOTHER WITH FREE?

val testInterpreter: BankOp ~> Id = {  
 override def apply[A](bo: BankOp[A]): Id[A] = bo match {  
 case LookupUserData(u) => new User(…)  
 case FetchOtherCredits(user) => List(Credit(1000000.usd))  
 // …  
 }  
}

def issueCreditCard(u: UserId): Free[BankOps, CreditLimit] = for {  
 user <- LookupUserData(u).liftFree  
 otherCredits <- FetchOtherCredits(user).liftFree  
 val limit = calculateLimit(user, otherCredits)  
 creditCard <- IssueNewCard(user, limit).liftFree  
 _ <- SendEmail(user.email, cardIssuedEmail(user, limit)).liftFree  
} yield limit

@adamwarski, SoftwareMill, LambdaDays 2017

WHY BOTHER WITH FREE?

val result: CreditLimit = issueCreditCard(UserId(42))  
 .foldMap(testInterpreter)

def issueCreditCard(u: UserId): Free[BankOps, CreditLimit] = for {  
 user <- LookupUserData(u).liftFree  
 otherCredits <- FetchOtherCredits(user).liftFree  
 val limit = calculateLimit(user, otherCredits)  
 creditCard <- IssueNewCard(user, limit).liftFree  
 _ <- SendEmail(user.email, cardIssuedEmail(user, limit)).liftFree  
} yield limit

@adamwarski, SoftwareMill, LambdaDays 2017

ABOUT ME

➤ Software Engineer, co-founder @

➤ Mainly Scala

➤ Open-source: Quicklens, MacWire, ElasticMQ, ScalaClippy, …

➤ Long time ago: student of Category Theory

@adamwarski, SoftwareMill, LambdaDays 2017

WHAT IS AN ALGEBRA?

“algebra is the study of mathematical symbols and the rules for manipulating these symbols"  
Wikipedia, 2017

“the part of mathematics in which letters and other general symbols are used to represent numbers
and quantities in formulae and equations."  

Google Search, 2017

y = ax + b

E = mc2

f(10◊x) = K(▸9)
def sum(l: List[L]) = l.fold(_ + _)

main = getCurrentTime >>= print

@adamwarski, SoftwareMill, LambdaDays 2017

UNIVERSAL ALGEBRA: SIGNATURE

➤ Goal: Model programs as algebras

➤ Let’s generalise!

➤ Studies algebraic structures, rather than concrete models

algebraic signature ⌃ = (S,⌦)

set S

family ⌦ of sets indexed by S⇤ ⇥ S

➤ Syntax:

➤ type names:

➤ operation names:

@adamwarski, SoftwareMill, LambdaDays 2017

UNIVERSAL ALGEBRA: SIGNATURE EXAMPLE

toString(succ(0) + succ(succ(0)))

S = {int, str}
⌦✏,int = {0}
⌦int,int = {succ}
⌦(int,int),int = {+}
⌦(str,str),str = {++}
⌦int,str = {toString}

@adamwarski, SoftwareMill, LambdaDays 2017

UNIVERSAL ALGEBRA: ALGEBRA

➤ A specific interpretation of the signature

➤ for each type, a set

➤ for each operation, a function between appropriate sets
⌃ = (S,⌦), S = {int, str} and ⌦ = {0, succ,+,++, toString}

We can define a ⌃-algebra A:

|A|int = {0, 1, 2, ...} = N
|A|str = {”a”, ”aa”, ..., ”b”, ”ab”, ...}

succA = �x.x+ 1
+A = �xy.x+ y

. . .

@adamwarski, SoftwareMill, LambdaDays 2017

TERM ALGEBRA

➤ Can we build an algebra out of pure syntax?

➤ Expressions (terms) that can be built from the signature

➤ Rather boring, no interpretation at all

|T⌃|int = {0, succ(0), succ(succ(0)), ..., 0 + 0, 0 + succ(0), ...}
|T⌃|str = {toString(0), toString(succ(0)), ..., toString(0)++toString(0), ...}

succT⌃(t) = succ(t), e.g. succT⌃(succ(0)) = succ(succ(0))
+T⌃(t1, t2) = t1 + t2
...

⌃ = (S,⌦), S = {int, str} and ⌦ = {0, succ,+,++, toString}

We define the term algebra T⌃:

@adamwarski, SoftwareMill, LambdaDays 2017

TERM ALGEBRA

➤ Defined inductively

➤ base: all constants are terms

➤ step: any functions we can apply on previous terms

⌃ = (S,⌦), S = {int, str} and ⌦ = {0, succ,+,++, toString}

{0}
{0, 0 + 0, succ(0), toString(0)}
{0, 0 + 0, succ(0), 0 + succ(0), succ(0) + 0, succ(0) + succ(0),
toString(0), toString(succ(0)), toString(0) + +toString(0)}

@adamwarski, SoftwareMill, LambdaDays 2017

HOMOMORPHISM

➤ Homomorphism is a function between algebras

➤ For each type, functions between type interpretations

➤ Such that operations are preserved

⌃ = (S,⌦), S = {int, str} and ⌦ = {0, succ,+,++, toString}

When A and B are ⌃-algebras, f : A ! B is a homomorphism when:

fint : |A|int ! |B|int
fstr : |A|str ! |B|str

8
x2|A|int

f

int

(succ
A

(x)) = succ

B

(f
int

(x))
8
xy2|A|int

f(x+
A

y) = f(x) +
B

f(y)
8
x2|A|int

f

str

(toString
A

(x)) = toString

B

(f
int

(x))

@adamwarski, SoftwareMill, LambdaDays 2017

INITIAL ALGEBRA

⌃-algebra I is initial when for any other

⌃-algebra A there is exactly one

homomorphism between them.

Theorem 1 T⌃ is initial

@adamwarski, SoftwareMill, LambdaDays 2017

INITIAL ALGEBRA

Theorem 1 T⌃ is initial

⌃ = (S,⌦), S = {int, str} and ⌦ = {0, succ,+,++, toString}

|A|int = {0, 1, 2, ...} = N
|A|str = {”a”, ”aa”, ..., ”b”, ”ab”, ...}

succA = �x.x+ 1
+A = �xy.x+ y

. . .

We can define a ⌃-algebra A:

f : T⌃ ! A

f(0T⌃) = 0A
f(succT⌃(t)) = succA(f(t))
...

@adamwarski, SoftwareMill, LambdaDays 2017

INITIAL ALGEBRA

➤ Only one way to interpret a term

➤ no junk: term algebra contains only what’s absolutely necessary

➤ no confusion: no two values are combined if they don’t need to be

➤ There’s only one initial algebra (up to isomorphism)

⌃-algebra I is initial when for any other

⌃-algebra A there is exactly one

homomorphism between them.

Theorem 1 T⌃ is initial

@adamwarski, SoftwareMill, LambdaDays 2017

INITIAL ALGEBRA

➤ This algebra is definitely not initial:

⌃ = (S,⌦), S = {int, str} and ⌦ = {0, succ,+,++, toString}

➤ Junk: strings “a”, “b”, …

➤ Confusion: 0+succ(0) is same as succ(0)+0

We can define a ⌃-algebra A:

|A|int = {0, 1, 2, ...} = N
|A|str = {”a”, ”aa”, ..., ”b”, ”ab”, ...}

@adamwarski, SoftwareMill, LambdaDays 2017

FREE ALGEBRA

For any set X, T⌃(X) is the term algebra with X added as ”constants”

(but called variables)

⌃ = (S,⌦), S = {int, str} and ⌦ = {0, succ,+,++, toString}

Xint = {i, j, k}
Xstr = {s1, s2}

succ(i) + j + succ(succ(k))
s1 ++toString(0)
toString(succ(0) + k) + +s2

@adamwarski, SoftwareMill, LambdaDays 2017

FREE ALGEBRA

➤ An interpretation of the variables determines an interpretation of any term

Theorem 1 For any variable set X, T⌃(X) is free

For any set X, T⌃(X) is the term algebra with X added as ”constants”

(but called variables)

⌃-algebra I is free over X (X ⇢ I) when for any other

⌃-algebra A, any function f : X ! |A| extends uniquely

to a homomorphism f#
: I ! A between them.

@adamwarski, SoftwareMill, LambdaDays 2017

FREE ALGEBRA EXAMPLE
⌃ = (S,⌦), S = {int, str} and ⌦ = {0, succ,+,++, toString}

Xint = {i, j, k}
Xstr = {s1, s2}
|A|int = N, |A|str = {”a”, ”aa”, ..., ”b”, ”ab”, ...}

succA = �x.x+ 1
+A = �xy.x+ y

. . .

f : X ! |A|
f(i) = 10, f(j) = 5, f(k) = 42
f(s1) = ”lambda”, f(s2) = ”days”

f

: T⌃(X) ! A

f

#(toString(succ(j) + succ(0)) + +s1) = ”7lambda”
f

#(s2 ++toString(k) + +s2) = ”lambda42days”

@adamwarski, SoftwareMill, LambdaDays 2017

MEANING OF FREE

➤ Free to interpret in any way

➤ no constraints

➤ Free of additional structure

➤ only what’s absolutely necessary

➤ No junk, no confusion

@adamwarski, SoftwareMill, LambdaDays 2017

FREE RECAP

➤ Algebraic signature:

➤ All possible interpretations: algebras

➤ For any variable set

➤ The term algebra is free

➤ any interpretation of the variables

➤ determines an interpretation of any term

➤ A general construction

⌃ = (S,⌦)

X

T⌃(X)

f : X ! |A|

f# : T⌃(X) ! A

@adamwarski, SoftwareMill, LambdaDays 2017

MODELLING SEQUENTIAL PROGRAMS: MONADS

➤ A sequential program can:

➤ return a value (pure)

➤ compute what to do next basing on previous result (flatMap)

➤ People decided to call an object with such operations a Monad

➤ Hence, we’ll use Monads to represent programs as data

➤ + sanity laws

@adamwarski, SoftwareMill, LambdaDays 2017

FREE MONAD

➤ Signature ~ pure + flatMap

➤ Variables ~ operations (our DSL)

➤ Free Monad ~ terms built out of pure, flatMap, our DSL

➤ modulo monad laws!

➤ e.g. flatMap(pure(x), f) = f(x)

Interpretation of the DSL determines the interpretation of the whole program

@adamwarski, SoftwareMill, LambdaDays 2017

FREE MONAD

➤ Our “world” (category) are Scala/Haskell/… monads (not algebras)

➤ The “world” (category) of the variables are generic Scala/Haskell/… terms (not sets)

➤ Signature:

➤ types: M[_]

➤ operations:
➤ pure[A]: A => M[A]

➤ flatMap[A, B](ma: M[A], f: A => M[B]): M[B]

➤ Modulo monad laws

@adamwarski, SoftwareMill, LambdaDays 2017

FREE IN CATS/SCALAZ

trait Free[F[_], A]  
 
object Free {  
 case class Pure[F[_], A](a: A) extends Free[F, A]  
 case class Suspend[F[_], A](a: F[A]) extends Free[F, A]  
 case class FlatMapped[F[_], B, C]( 
 c: Free[F, C], f: C => Free[F, B] extends Free[F, B]  
}

@adamwarski, SoftwareMill, LambdaDays 2017

FREE IN HASKELL

data Free f r = Free (f (Free f r)) | Pure r

trait Free[F[_], A]  
 
object Free {  
 case class Pure[F[_], A](a: A) extends Free[F, A]  
 case class Join[F[_], A](f: F[Free[F, A]]) extends Free[S, A]  
}

f/F[_] must be a functor!

@adamwarski, SoftwareMill, LambdaDays 2017

SUMMING UP

➤ Direct construction of free algebras

➤ Hand-wavy construction of free monad

➤ Free

➤ free to interpret in any way

➤ free of constraints

➤ no junk, no confusion

➤ Free in Haskell is the same free as in Scala

@adamwarski, SoftwareMill, LambdaDays 2017

FURTHER READING

➤ “Foundations of Algebraic Specification and Formal
Software Development” by Donald Sannella and
Andrzej Tarlecki

➤ The Internet

THANK YOU!

