THE ORIGINS OF FREE

Adam Warski, SoftwareMill 10/2/2017, LambdaDays

THE PLAN

- ► Why bother?
- ► Universal algebra
- ► Free algebras
- ► The meaning of life free
- ► Monads & free monads
- ► Free monads in Haskell, Cats and Scalaz

► It's simpler than it sounds

- Define a composable program
- Using high-level custom instructions
- Run it in context later, given instruction interpretation

user <- LookupUserData(u).liftFree otherCredits <- FetchOtherCredits(user).liftFree val limit = calculateLimit(user, otherCredits) creditCard <- IssueNewCard(user, limit).liftFree } yield limit

```
def issueCreditCard(u: UserId): Free[BankOps, CreditLimit] = for {
    <- SendEmail(user.email, cardIssuedEmail(user, limit)).liftFree</pre>
```


- user <- LookupUserData(u).liftFree otherCredits <- FetchOtherCredits(user).liftFree</pre> val limit = calculateLimit(user, otherCredits) creditCard <- IssueNewCard(user, limit).liftFree <- SendEmail(user.email, cardIssuedEmail(user, limit)).liftFree</pre> } yield limit
- **val** productionInterpreter: BankOp ~> Future = { override def apply[A](bo: BankOp[A]): Future[A] = bo match { case LookupUserData(u) => oracleDB2dao.lookupUser(u) case FetchOtherCredits(user) => legacySoapSystem.fetchCredits(user) // ...

```
def issueCreditCard(u: UserId): Free[BankOps, CreditLimit] = for {
```


- user <- LookupUserData(u).liftFree otherCredits <- FetchOtherCredits(user).liftFree</pre> **val** limit = calculateLimit(user, otherCredits) creditCard <- IssueNewCard(user, limit).liftFree } yield limit
- **val** testInterpreter: BankOp ~> Id = { override def apply[A](bo: BankOp[A]): Id[A] = bo match { **case** LookupUserData(u) => **new** User(...) // ...

```
def issueCreditCard(u: UserId): Free[BankOps, CreditLimit] = for {
  <- SendEmail(user.email, cardIssuedEmail(user, limit)).liftFree</pre>
```

```
case FetchOtherCredits(user) => List(Credit(1000000.usd))
```


user <- LookupUserData(u).liftFree otherCredits <- FetchOtherCredits(user).liftFree</pre> **val** limit = calculateLimit(user, otherCredits) creditCard <- IssueNewCard(user, limit).liftFree } yield limit

```
val result: CreditLimit = issueCreditCard(UserId(42))
```

def issueCreditCard(u: UserId): Free[BankOps, CreditLimit] = for {

<- SendEmail(user.email, cardIssuedEmail(user, limit)).liftFree</pre>

.foldMap(testInterpreter)

ABOUT ME

Software Engineer, co-founder @ SOFTWAREMILL

► Mainly Scala

> Open-source: Quicklens, MacWire, ElasticMQ, ScalaClippy, ...

Long time ago: student of Category Theory

WHAT IS AN ALGEBRA?

"algebra is the study of mathematical symbols and the rules for manipulating these symbols" Wikipedia, 2017

"the part of mathematics in which letters and other general symbols are used to represent numbers and quantities in formulae and equations." Google Search, 2017

> f(10 def sum(l: Lis main = getCu

- y = ax + b
 - $E = mc^2$
- $f(10\Diamond x) = K(\flat 9)$
- def sum(l: List[L]) = l.fold(_ + _)
 - main = getCurrentTime >>= print

UNIVERSAL ALGEBRA: SIGNATURE

- ► Goal: Model programs as algebras
- Let's generalise!
- Studies algebraic structures, rather than concrete models
- Syntax: algebraic signature $\Sigma = (S, \Omega)$
 - \blacktriangleright type names: set S
 - \blacktriangleright operation names: family Ω of sets indexed by $S^* \times S$

UNIVERSAL ALGEBRA: SIGNATURE EXAMPLE

 $S = \{int, str\}$ $\Omega_{\epsilon,int} = \{0\}$

toString(succ(0) + succ(succ(0)))

 $\Omega_{int,int} = \{succ\}$ $\Omega_{(int,int),int} = \{+\}$ $\widehat{\Omega_{(str,str),str}} = \{++\}$ $\Omega_{int.str} = \{toString\}$

UNIVERSAL ALGEBRA: ALGEBRA

- > A specific interpretation of the **signature**
 - ► for each type, a set
 - ► for each operation, a function between appropriate sets $\Sigma = (S, \Omega), S = \{int, str\} \text{ and } \Omega = \{0, succ, +, ++, toString\}$ We can define a Σ -algebra A: $|A|_{int} = \{0, 1, 2, ...\} = \mathbb{N}$ $|A|_{str} = \{"a", "aa", ..., "b", "ab", ...\}$ $succ_A = \lambda x.x + 1$ $+_A = \lambda x y \cdot x + y$

TERM ALGEBRA

• • •

- Can we build an algebra out of pure syntax?
- > Expressions (terms) that can be built from the signature
- ► Rather boring, no interpretation at all

 $\Sigma = (S, \Omega), S = \{int, str\} \text{ and } \Omega = \{0, succ, +, ++, toString\}$

We define the term algebra T_{Σ} :

 $|T_{\Sigma}|_{int} = \{0, succ(0), succ(succ(0)), ..., 0 +$ $|T_{\Sigma}|_{str} = \{toString(0), toString(succ(0)), toString(succ(0)),$

 $succ_{T_{\Sigma}}(t) = succ(t), \text{ e.g. } succ_{T_{\Sigma}}(succ(0)) = succ(succ(0))$ $+_{T_{\Sigma}}(t_1, t_2) = t_1 + t_2$

$$\{0, 0 + succ(0), ...\}$$

..., $toString(0) + toString(0), ...\}$

TERM ALGEBRA

- $\Sigma = (S, \Omega), S = \{int, str\} \text{ and } \Omega = \{0, succ, +, ++, toString\}$
- Defined inductively
 - \blacktriangleright base: all constants are terms
 - step: any functions we can apply on previous terms $\{0\}$ $\{0, 0+0, succ(0), toString(0)\}$ $\{0, 0+0, succ(0), 0+succ(0), succ(0)+0, succ(0)+succ(0), succ(0), succ(0)$ toString(0), toString(succ(0)), toString(0) + +toString(0)

HOMOMORPHISM

- Homomorphism is a function between algebras
 - For each type, functions between type interpretations
 - Such that operations are preserved

 $\Sigma = (S, \Omega), S = \{int, str\} \text{ and } \Omega = \{0, succ, +, ++, toString\}$

When A and B are Σ -algebras, $f : A \to B$ is a homomorphism when: $f_{int}: |A|_{int} \to |B|_{int}$ $f_{str}: |A|_{str} \to |B|_{str}$

$$\forall_{x \in |A|_{int}} f_{int}(succ_A(x)) = succ_B(f_{int}(x))$$

$$\forall_{xy \in |A|_{int}} f(x + Ay) = f(x) + B f(y)$$

$$\forall_{x \in |A|_{int}} f_{str}(toString_A(x)) = toString_B(x)$$

 $(f_{int}(x))$

 Σ -algebra A there is **exactly one** homomorphism between them.

Theorem 1 T_{Σ} is initial

Σ -algebra I is **initial** when for any other

 $\Sigma = (S, \Omega), S = \{int, str\} \text{ and } \Omega = \{0, succ, +, ++, toString\}$ We can define a Σ -algebra A: $|A|_{int} = \{0, 1, 2, ...\} = \mathbb{N}$ $|A|_{str} = \{"a", "aa", ..., "b", "ab", ...\}$

 $f(0_{T_{\Sigma}}) = 0_A$

. . .

Theorem 1 T_{Σ} is initial $succ_A = \lambda x.x + 1$ $+_A = \lambda x y \cdot x + y$ • • •

 $f:T_{\Sigma}\to A$

 $f(succ_{T_{\Sigma}}(t)) = succ_A(f(t))$

 Σ -algebra I is **initial** when for any other Σ -algebra A there is **exactly one** homomorphism between them.

Theorem 1 T_{Σ} is initial

- Only one way to interpret a term
- > no junk: term algebra contains only what's absolutely necessary
- > *no confusion*: no two values are combined if they don't need to be
- There's only one initial algebra (up to isomorphism)

> This algebra is definitely **not initial**:

 $\Sigma = (S, \Omega), S = \{int, str\} \text{ and } \Omega = \{0, succ, +, ++, toString\}$

We can define a Σ -algebra A:

$$\begin{split} |A|_{int} &= \{0, 1, 2, \ldots\} = \mathbb{N} \\ |A|_{str} &= \{"a", "aa", \ldots, "b", "ab", \ldots\} \end{split}$$

 \blacktriangleright Confusion: 0 + succ(0) is same as succ(0) + 0

FREE ALGEBRA

For any set X, $T_{\Sigma}(X)$ is the term algebra with X added as "constants" (but called variables)

 $\Sigma = (S, \Omega), S = \{int, str\} \text{ and } \Omega = \{0, succ, +, ++, toString\}$

 $s_1 + +toString(0)$

 $X_{int} = \{i, j, k\}$ $X_{str} = \{s_1, s_2\}$

succ(i) + j + succ(succ(k)) $toString(succ(0) + k) + +s_2$

FREE ALGEBRA

For any set X, $T_{\Sigma}(X)$ is the term algebra with X added as "constants" (but called variables)

to a homomorphism $f^{\#}: I \to A$ between them.

Theorem 1 For any variable set X, $T_{\Sigma}(X)$ is free

> An interpretation of the variables determines an interpretation of any term

Σ -algebra I is free over X ($X \subset I$) when for any other Σ -algebra A, any function $f: X \to |A|$ extends uniquely

FREE ALGEBRA EXAMPLE

 $\Sigma = (S, \Omega), S = \{int, str\} \text{ and } \Omega = \{0, succ, +, ++, toString\}$

$$\begin{aligned} X_{int} &= \{i, j, k\} \\ X_{str} &= \{s_1, s_2\} \\ |A|_{int} &= \mathbb{N}, \, |A|_{str} = \{"a", "aa", ..., "b", "ab", ...\} \end{aligned}$$

$$f: X \to |A|$$

 $f(i) = 10, f(j) = 5, f(k) = 42$
 $f(s_1) = "lambda", f(s_2) = "days"$

 $f^{\#}: T_{\Sigma}(X) \to A$ $f^{\#}(toString(succ(j) + succ(0)) + +s_1) = "7lambda"$ $f^{\#}(s_2 + +toString(k) + +s_2) = "lambda42days"$

$$succ_A = \lambda x.x + 1$$
$$+_A = \lambda xy.x + y$$

MEANING OF FREE

- ► Free to interpret in any way
 - ► no constraints
- Free of additional structure
 - only what's absolutely necessary
- ► No junk, no confusion

FREE RECAP

- ► Algebraic signature: $\Sigma = (S, \Omega)$
- ► All possible interpretations: algebras
- \blacktriangleright For any variable set X
- ► The term algebra $T_{\Sigma}(X)$ is free
 - ► any interpretation of the variables $f: X \to |A|$
 - ► determines an interpretation of any term $f^{\#}: T_{\Sigma}(X) \to A$

► A general construction

 $: X \to |A|$ term $f^{\#} : T_{\Sigma}(X) \to A$

MODELLING SEQUENTIAL PROGRAMS: MONADS

- ► A sequential program can:
 - ► return a value (pure)
 - compute what to do next basing on previous result (flatMap)
- > People decided to call an object with such operations a *Monad*
- ► Hence, we'll use *Monads* to represent programs as data
 - + sanity laws

FREE MONAD

- Signature ~ pure + flatMap
- ► Variables ~ operations (our DSL)
- ► Free Monad ~ terms built out of pure, flatMap, our DSL
 - ► modulo monad laws!
 - > e.g. flatMap(pure(x), f) = f(x)

Interpretation of the DSL determines the interpretation of the whole program

FREE MONAD

- ► Our "world" (category) are Scala/Haskell/... monads (not algebras)
- ► Signature:
 - types: M[]
 - ► operations:
 - > pure[A]: A => M[A]
 - > flatMap[A, B](ma: M[A], f: A => M[B]): M[B]
- ► Modulo monad laws

► The "world" (category) of the variables are generic Scala/Haskell/... terms (not sets)

FREE IN CATS/SCALAZ

trait Free[F[_], A]

object Free {
 case class Pure[F[_], A](a: A) extends Free[F, A]
 case class Suspend[F[_], A](a: F[A]) extends Free[F, A]
 case class FlatMapped[F[_], B, C](
 c: Free[F, C], f: C => Free[F, B] extends Free[F, B]

FREE IN HASKELL

data Free f r = Free (f (Free f r)) | Pure r

trait Free[F[], A]

object Free { case class Pure[F[_], A](a: A) extends Free[F, A] case class Join[F[_], A](f: F[Free[F, A]]) extends Free[S, A]

f/**F**[_] must be a functor!

SUMMING UP

- Direct construction of free algebras
- Hand-wavy construction of free monad
- ► Free
 - Free to interpret in any way
 - ► free of constraints
 - ► no junk, no confusion
- ► Free in Haskell is the same free as in Scala

FURTHER READING

- "Foundations of Algebraic Specification and Formal Software Development" by Donald Sannella and Andrzej Tarlecki
- ► The Internet

Donald Sannella Andrzej Tarlecki

Foundations of Algebraic Specification and Formal Software Development

Springer

THANK YOU!