
TRANSACTIONAL EVENT SOURCING 
USING SLICK

ADAM WARSKI





ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

EVENT SOURCING?

▸ All changes in the system are captured as a sequence of events



ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

WHY EVENT SOURCING?

▸ IT: Information Technology


▸ do not loose information!


▸ Audit log


▸ Re-create system state



ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

ME + AUDIT = HIBERNATE ENVERS



ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

ME

▸ coder @ 


▸ Lightbend consulting partner


▸ mainly Scala


▸ open-source: MacWire, ElasticMQ, Bootzooka, …


▸ http://www.warski.org / @adamwarski

http://www.warski.org


ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

THE GOAL

▸ Get the benefits of Event Sourcing …


▸ … still being able to leverage RDBMS features


▸ transactions


▸ schema


▸ SQL



ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

OTHER APPROACHES

▸ Event Store (https://geteventstore.com)


▸ Akka Persistence (http://doc.akka.io/docs/akka/current)


▸ Eventuate (http://eventuate.io)


▸ + more

https://geteventstore.com
http://doc.akka.io/docs/akka/current
http://eventuate.io


ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

EVENTS

▸ Immutable


▸ Primary source of truth


▸ Past tense



ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

EVENTS

▸ Payload: arbitrary json (case class)


▸ Event type (name of class)


▸ Aggregate type & id


▸ Id, timestamp


▸ Transaction id


▸ User id



ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

HOW?

▸ Events are stored in a dedicated table


▸ Basing on events, a read model is updated


▸ similar to what a “traditional” CRUD model could be


▸ Consistency: both done in a single transaction



ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

SLICK

▸ We operate on DBIOAction[T]


▸ a description of actions to be done


▸ execution deferred later


▸ can be sequenced using flatMap


▸ yes, it’s a Monad



User data
Transaction

READ MODEL
MODEL 

UPDATE

EVENT 
LISTENER

External systems

EVENT 
PROCESSOR

REGISTRYREGISTRYREGISTRY

Events

COMMAND



EVENT SOURCING LIVE



ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

POTENTIAL PROBLEMS

▸ Ordering of concurrent events operating on the same aggregate root


▸ DBIOAction “leaks”


▸ Future wrapping



ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

SUMMING UP: FUNCTIONS INVOLVED

▸ Commands: Data => CommandResult[S, F] 
that is, DBIOAction[(Either[S, F], List[Event])]


▸ Event listeners: Event => DBIOAction[List[Event]]


▸ Model updates: Event => DBIOAction[Unit]



ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

LINKS

▸ https://github.com/softwaremill/slick-eventsourcing


▸ README+blog longer than code


▸ only a skeleton


▸ probably for customisation


▸ https://github.com/adamw/slick-eventsourcing-pres

https://github.com/softwaremill/slick-eventsourcing
https://github.com/adamw/slick-eventsourcing-pres


THANK YOU!






