
TRANSACTIONAL EVENT SOURCING
USING SLICK

ADAM WARSKI

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

EVENT SOURCING?

▸ All changes in the system are captured as a sequence of events

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

WHY EVENT SOURCING?

▸ IT: Information Technology

▸ do not loose information!

▸ Audit log

▸ Re-create system state

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

ME + AUDIT = HIBERNATE ENVERS

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

ME

▸ coder @

▸ Lightbend consulting partner

▸ mainly Scala

▸ open-source: MacWire, ElasticMQ, Bootzooka, …

▸ http://www.warski.org / @adamwarski

http://www.warski.org

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

THE GOAL

▸ Get the benefits of Event Sourcing …

▸ … still being able to leverage RDBMS features

▸ transactions

▸ schema

▸ SQL

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

OTHER APPROACHES

▸ Event Store (https://geteventstore.com)

▸ Akka Persistence (http://doc.akka.io/docs/akka/current)

▸ Eventuate (http://eventuate.io)

▸ + more

https://geteventstore.com
http://doc.akka.io/docs/akka/current
http://eventuate.io

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

EVENTS

▸ Immutable

▸ Primary source of truth

▸ Past tense

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

EVENTS

▸ Payload: arbitrary json (case class)

▸ Event type (name of class)

▸ Aggregate type & id

▸ Id, timestamp

▸ Transaction id

▸ User id

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

HOW?

▸ Events are stored in a dedicated table

▸ Basing on events, a read model is updated

▸ similar to what a “traditional” CRUD model could be

▸ Consistency: both done in a single transaction

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

SLICK

▸ We operate on DBIOAction[T]

▸ a description of actions to be done

▸ execution deferred later

▸ can be sequenced using flatMap

▸ yes, it’s a Monad

User data
Transaction

READ MODEL
MODEL
UPDATE

EVENT
LISTENER

External systems

EVENT
PROCESSOR

REGISTRYREGISTRYREGISTRY

Events

COMMAND

EVENT SOURCING LIVE

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

POTENTIAL PROBLEMS

▸ Ordering of concurrent events operating on the same aggregate root

▸ DBIOAction “leaks”

▸ Future wrapping

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

SUMMING UP: FUNCTIONS INVOLVED

▸ Commands: Data => CommandResult[S, F]
that is, DBIOAction[(Either[S, F], List[Event])]

▸ Event listeners: Event => DBIOAction[List[Event]]

▸ Model updates: Event => DBIOAction[Unit]

ADAM WARSKI, SOFTWAREMILL @ADAMWARSKI

LINKS

▸ https://github.com/softwaremill/slick-eventsourcing

▸ README+blog longer than code

▸ only a skeleton

▸ probably for customisation

▸ https://github.com/adamw/slick-eventsourcing-pres

https://github.com/softwaremill/slick-eventsourcing
https://github.com/adamw/slick-eventsourcing-pres

THANK YOU!

