
What have the
@nnotations done to

us?
@adamwarski

Kraków, 9-11 May 2018

PART 1
ABOUT ANNOTATIONS

@NNOTATIONS

▸ Introduced to Java in 2004

▸ Replaced xml programming

WHY @, IN THE FIRST PLACE?

▸ We need a way to express meta-data

▸ Describe classes, methods, fields (@Entity, @JsonProperty)

▸ Cross-cutting concerns (@Secure, @Transactional)

▸ Orchestrate the application (@Inject, @EnableWebMvc)

WHY @, IN THE FIRST PLACE?

▸ Easy to introduce, non-invasive

▸ Clearly separated

▸ Close to referenced elements

▸ Can be inspected statically & at run-time

MOST POPULAR != BEST

AS GOOD AS IT GETS IN JAVA <= 7

AN EMBEDDED MINI LANGUAGE,
INTERPRETED AT RUN-TIME

What @ really are?

ANNOTATION INTERPRETERS;
A RUN-TIME FOR THE DYNAMIC
LANGUAGE

What are containers?

WE PROGRAM THE CONTAINERS USING
ANNOTATIONS

What do we do?

PART 2
WHAT @ HAVE BECOME?

WHAT PATTERNS HAVE EMERGED?
@Functional  
@Blockchain  
@MachineLearning  
@MicroService  
@PleaseWork  
public class DoesNotMatter {}

Fear of new ...()

MANUAL DEPENDENCY INJECTION

▸ Split object graph creation

▸ e.g. per-package, functionality

▸ package scope

▸ Create the objects how you want

▸ Reader vs writer convenience

Fear of public static void main()

STARTUP SEQUENCE

▸ Do you know how your JavaEE/Spring application starts?

▸ What happens and in what order?

▸ Reader vs writer convenience

CLASSPATH SCANNING

▸ a general mechanism to avoid main & new

▸ add a jar & it magically works

▸ very convenient for rapid bootstrapping

TRADE CERTAINTY & CONTROL

FAST & CONVENIENT BOOTSTRAP
for

EXPLORABILITY

Code should be easy to read  
Easy to navigate

Understand what services are used, how and when 
What's the ordering

Go-to-definition: best method to learn

META-DATA MAPPING

▸ Entities

▸ JSON

▸ HTTP endpoints

▸ ...

▸ Describe classes, methods and fields

TRANSFORMING A JAX-RS MAPPING

THE GOOD

‣ Meta-data separated from the business logic

‣ We can test the logic without the HTTP layer

‣ Readable code

‣ Automatically generate Swagger docs

THE BAD

‣ Is this the right combination of annotations? Maybe
something is missing?

‣ Where is the endpoint exposed?

‣ What are all the endpoints exposed at a given path?

‣ Are the JAX-RS annotations tested?

‣ Stringly-typed parameter references

WHAT IF ...

▸ The endpoint is represented as a Java value

▸ Separation & testability of business logic
maintained

▸ The description of the endpoint is also
testable

▸ Basing on Endpoint values, Swagger docs
could be generated

▸ Programmatically define endpoints

JUST LOOKING AT THE CODE, IT’S
CRYSTAL CLEAR WHAT’S HAPPENING
AND WHEN.

JUST USE JAVA! (OR A MORE ADVANCED JVM LANGUAGE OF YOUR CHOICE)

▸ Meta-data becomes first-class values

▸ A single language for code and meta-data

▸ Can be generated using:

▸ loops

▸ conditionals

▸ helper methods

STATIC VS DYNAMIC 
IMAGINE THAT ...
▸ You don't have to copy ----------------->  

to all entities

▸ Instead, loop over descriptions

@TableGenerator( 
 name="tab",  
 initialValue=0,  
 allocationSize=50)  
@GeneratedValue( 
 strategy=GenerationType.TABLE,  
 generator="tab")  
@Id

IF THAT'S NOT ENOUGH ...

▸ http://annotatiomania.com

▸ Jarek Ratajski's presentation 
on the same subject

▸ composability:  
@Retry + @Transactional?

http://annotatiomania.com

PART 3
IS THIS JUST FANTASY?

OR DO PEOPLE ACTUALLY DO THAT?

SPARK (SPARKJAVA.COM)

http://sparkjava.com

JOOQ (JOOQ.ORG)

http://jooq.org

SPRING 5 (FUNCTIONAL WEB FRAMEWORK)

OTHERS?

▸ Scala

▸ macros & implicits

▸ Ceylon

▸ type-safe metamodel

PART 4
SUMMING UP

▸ Greats docs & integrations

▸ Learnable

▸ just as a separate language

▸ "Spring VM"

▸ teams can be efficient

▸ Local optimum

▸ As good as (pre-λ) Java gets

▸ Evolves in the same direction

SUMMARY

▸ Containers are interpreters for a "not very typesafe" language

▸ Instead: use a proper language, e.g. Java

▸ or Scala/Kotlin/Ceylon/...

▸ Don't fear! main() and new are OK

SUMMARY

▸ Writing a bit more code is OK, if that makes you:

▸ retain control

▸ more certain of what code does

▸ increase explorability

▸ Meta-data, descriptions, as first-class values

BLOG.SOFTWAREMILL.COM

http://blog.softwaremill.com

THANK YOU!
@adamwarski 

adam.warski@softwaremill.com

mailto:adam.warski@softwaremill.com

