Limits and colimits in various categories of institutions

Adam Warski

adam.warski@students.mimuw.edu.pl

University of Warsaw, Poland

CALCO-jnr 20 August 2007, Bergen, Norway

- An introduction to institutions
- 2 Limits and colimits of diagrams of institutions
- Relating limits in different categories of institutions

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Part I

An introduction to institutions

Adam Warski adam.warski@students.mimuw.edu.pl Limits and colimits in various categories of institutions 3/26

프 🗼 🚊

< 🗇 > <

- An institution is a formalisation of a logical system
- It consist of:
 - a category of signatures Sign
 - **2** a model functor $\mathbf{Mod} : \mathbf{Sign}^{op} \to \mathbf{Cat}$
 - **3** a sentence functor Sen: Sign \rightarrow Set
 - ${f 9}$ for each signature $\Sigma\in |{f Sign}|$ a satisfaction relation \models_Σ

- An institution is a formalisation of a logical system
- It consist of:
 - a category of signatures Sign
 - 2 a model functor $Mod: Sign^{op} \rightarrow Cat$
 - **3** a sentence functor Sen: Sign \rightarrow Set
 - ${f 9}$ for each signature $\Sigma\in |{f Sign}|$ a satisfaction relation \models_Σ
- For each signature morphism σ: Σ → Σ', the satisfaction condition must hold:

$$\operatorname{Mod}(\sigma)(m) \models_{\Sigma} \phi \iff m \models_{\Sigma'} \operatorname{Sen}(\sigma)(\phi)$$

- Signatures: many-sorted algebraic signatures
- Sentences for a signature Σ: equations of the form
 ∀X.t = t' (t and t' are terms with variables from the set X over the signature Σ)
- Models for a signature Σ: algebras with homomorphisms
- The satisfaction relation is defined in the usual way

イロト 不得 とくほ とくほ とうほ

Having a signature morphism $\sigma \colon \Sigma \to \Sigma'$ we can:

Having a signature morphism $\sigma \colon \Sigma \to \Sigma'$ we can:

for φ ∈ Sen(Σ), build a sentence σ(φ) ∈ Sen(Σ'), with all symbols "translated"

Having a signature morphism $\sigma \colon \Sigma \to \Sigma'$ we can:

for φ ∈ Sen(Σ), build a sentence σ(φ) ∈ Sen(Σ'), with all symbols "translated"

• for a model $m' \in |\mathbf{Mod}(\Sigma')|$, build its reduct $m'|_{\sigma} \in |\mathbf{Mod}(\Sigma)|$

A morphism between institutions I and I' consists of:

- a functor Φ : Sign \rightarrow Sign'
- a natural transformation $\beta : \mathbf{Mod} \to \Phi^{op}; \mathbf{Mod}'$
- a natural transformation $\alpha : \Phi; \mathbf{Sen}' \to \mathbf{Sen}$

イロト イ押ト イヨト イヨト

A morphism between institutions I and I' consists of:

- a functor $\Phi : \mathbf{Sign} \to \mathbf{Sign}'$
- a natural transformation $\beta : \mathbf{Mod} \to \Phi^{op}; \mathbf{Mod}'$
- a natural transformation $\alpha : \Phi; \mathbf{Sen}' \to \mathbf{Sen}$

Such that the following satisfaction condition holds:

$$m \models_{\Sigma} \beta(\Sigma)(\phi) \Longleftrightarrow \alpha(\Sigma)(m) \models_{\Phi(\Sigma)} \phi$$

A morphism between institutions I and I' consists of:

- a functor $\Phi : \mathbf{Sign} \to \mathbf{Sign}'$
- a natural transformation $\beta : \mathbf{Mod} \to \Phi^{op}; \mathbf{Mod}'$
- a natural transformation $\alpha : \Phi; \mathbf{Sen}' \to \mathbf{Sen}$

Such that the following satisfaction condition holds:

$$m \models_{\Sigma} \beta(\Sigma)(\phi) \Longleftrightarrow \alpha(\Sigma)(m) \models_{\Phi(\Sigma)} \phi$$

A morphism shows, how a richer institution is built over a simpler one.

ヘロト 人間ト 人団ト 人団ト

A comorphism between institutions I and I' consists of:

- a functor Φ : Sign \rightarrow Sign'
- a natural transformation $\beta: \Phi^{op}; \mathbf{Mod}' \to \mathbf{Mod}$
- a natural transformation $\alpha : \mathbf{Sen} \to \Phi; \mathbf{Sen'}$

A comorphism between institutions I and I' consists of:

- a functor $\Phi : \mathbf{Sign} \to \mathbf{Sign}'$
- a natural transformation $\beta : \Phi^{op}; \mathbf{Mod}' \to \mathbf{Mod}$
- a natural transformation $\alpha : \mathbf{Sen} \to \Phi; \mathbf{Sen'}$

Such that the following satisfaction condition holds:

$$\alpha(\Sigma)(m) \models_{\Sigma} \phi \Longleftrightarrow m \models_{\Phi(\Sigma)} \beta(\Sigma)(\phi)$$

A comorphism between institutions I and I' consists of:

- a functor $\Phi : \mathbf{Sign} \to \mathbf{Sign}'$
- a natural transformation $\beta : \Phi^{op}; \mathbf{Mod}' \to \mathbf{Mod}$
- a natural transformation $\alpha : \mathbf{Sen} \to \Phi; \mathbf{Sen'}$

Such that the following satisfaction condition holds:

$$\alpha(\Sigma)(m) \models_{\Sigma} \phi \Longleftrightarrow m \models_{\Phi(\Sigma)} \beta(\Sigma)(\phi)$$

Comorphisms show, how a simpler institution can be represented in a more complex one.

ヘロト 人間ト 人団ト 人団ト

Morphisms and comorphisms — example

Having institutions EQ and FOEQ we can build:

Example

• a morphism from FOEQ to EQ

- when translating signatures, we forget about the relations
- first-order models are also models for equational logic
- an equation is also a first-order-with-equality formula

イロト イ押ト イヨト イヨト

Morphisms and comorphisms — example

Having institutions EQ and FOEQ we can build:

Example

• a morphism from FOEQ to EQ

- when translating signatures, we forget about the relations
- first-order models are also models for equational logic
- an equation is also a first-order-with-equality formula

Example

- a comorphism from EQ to FOEQ
 - when translating signatures, we add an empty (multi-sorted) set of relational symbols
 - again: first-order models are also models for equational logic
 - again: an equation is also a first-order formula

Part II

Limits and colimits of diagrams of institutions

Adam Warski adam.warski@students.mimuw.edu.pl Limits and colimits in various categories of institutions 10/26

크 > 크

• Using morphisms or comorphisms, we can build two categories of institutions: INS and coINS

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Diagrams of institutions

- Using morphisms or comorphisms, we can build two categories of institutions: INS and coINS
- And build diagrams of institutions, in one of those categories

-

くロト くぼと くほと くほと

Diagrams of institutions

- Using morphisms or comorphisms, we can build two categories of institutions: INS and coINS
- And build diagrams of institutions, in one of those categories

イロト イ押ト イヨト イヨト

Where do these diagrams come from?

- Such diagrams appear in heterogeneous specifications
- Various parts of the system are specified in various specification languages
- Each specification is built on top of an institution
- Specifications are linked by morphisms or comorphisms

▲◎ ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Theorem (Tarlecki, 1986)

INS is complete.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Tarlecki, 1986)

INS is complete.

Also, similarly:

Theorem (Also known for a long time)

coINS is complete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Theorem (Tarlecki, 1986)

INS is complete.

Also, similarly:

Theorem (Also known for a long time)

coINS is complete.

- Limits are easy to construct (in a component-by-component manner)
- The construction of categories of models and sentence sets is independent of the structure of the signature category

イロト イ押ト イヨト イヨト

Equalizers in INS

$$\mathbf{I} \xrightarrow{\langle \Phi, \beta, \alpha \rangle} \mathbf{I}_1 \xrightarrow{\langle \Phi_1, \beta_1, \alpha_1 \rangle} \mathbf{I}_2$$

Construction

• Sign and Φ : equalizer of Φ_1 i Φ_2

イロト イポト イヨト イヨト

Equalizers in INS

$$\mathbf{I} \xrightarrow{\langle \Phi, \beta, \alpha \rangle} \mathbf{I}_1 \xrightarrow{\langle \Phi_1, \beta_1, \alpha_1 \rangle} \mathbf{I}_2$$

Construction

- Sign and Φ: equalizer of Φ₁ i Φ₂
- For a given signature Σ ∈ |Sign|, model category and β(Σ): equalizer of β₁(Σ) and β₂(Σ)

- 22

(日)

Equalizers in INS

$$\mathbf{I} \xrightarrow{\langle \Phi, \beta, \alpha \rangle} \mathbf{I}_1 \xrightarrow{\langle \Phi_1, \beta_1, \alpha_1 \rangle} \mathbf{I}_2$$

Construction

- Sign and Φ: equalizer of Φ₁ i Φ₂
- For a given signature Σ ∈ |Sign|, model category and β(Σ): equalizer of β₁(Σ) and β₂(Σ)
- For a given signature Σ ∈ |Sign|, sentence set and α(Σ): coequalizer of α₁(Σ) and α₂(Σ)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Fact

INS and coINS are not cocomplete.

ヘロト ヘ回ト ヘヨト ヘヨト

📃 ৩৭৫

Fact

INS and coINS are not cocomplete.

However due to purely set-theoretical issues; we can get rid of those problems, by considering institutions, whose signature categories are small (sINS and scoINS). Then we get:

Fact

INS and coINS are not cocomplete.

However due to purely set-theoretical issues; we can get rid of those problems, by considering institutions, whose signature categories are small (sINS and scoINS). Then we get:

Theorem

sINS and scoINS are cocomplete.

Fact

INS and coINS are not cocomplete.

However due to purely set-theoretical issues; we can get rid of those problems, by considering institutions, whose signature categories are small (sINS and scoINS). Then we get:

Theorem

sINS and scoINS are cocomplete.

Fact

The embeddings sINS \hookrightarrow INS and scoINS \hookrightarrow coINS are cocontinuous.

3

Fact

INS and coINS are not cocomplete.

However due to purely set-theoretical issues; we can get rid of those problems, by considering institutions, whose signature categories are small (sINS and scoINS). Then we get:

Theorem

sINS and scoINS are cocomplete.

Fact

The embeddings sINS \hookrightarrow INS and scoINS \hookrightarrow coINS are cocontinuous.

But the constructions are much uglier:

- coproducts easy
- coequalizers not so easy

(日)

- 20

< ∃⇒

Coequalizers in sINS

$$\mathbf{I}_1 \xrightarrow[\langle \Phi_1, \beta_1, \alpha_1 \rangle]{\langle \Phi_2, \beta_2, \alpha_2 \rangle} \mathbf{I}_2 \xrightarrow[\langle \Phi, \beta, \alpha \rangle]{\langle \Phi, \beta, \alpha \rangle} \mathbf{I}$$

Construction

• Sign and Φ : coequalizer of Φ_1 i Φ_2

-20

Coequalizers in sINS

$$\mathbf{I}_1 \xrightarrow[\langle \Phi_1, \beta_1, \alpha_1 \rangle]{\langle \Phi_2, \beta_2, \alpha_2 \rangle} \mathbf{I}_2 \xrightarrow[\langle \Phi, \beta, \alpha \rangle]{\langle \Phi, \beta, \alpha \rangle} \mathbf{I}$$

Construction

- Sign and Φ: coequalizer of Φ₁ i Φ₂
- For a given signature Σ ∈ |Sign|, model category Mod(Σ): colimit of diagram, which has vertices:
 - all model categories in I₂ for signatures Σ₂ such that there exists a morphism in Sign from Σ to Φ(Σ₂)
 - all model categories in I₁ for signatures Σ₁ such that there exists a morphism in Sign from Σ to Φ(Φ₁(Σ₁))
 - and some morphisms (...)

イロト イ押ト イヨト イヨト

Coequalizers in sINS

$$\mathbf{I}_1 \xrightarrow[\langle \Phi_1, \beta_1, \alpha_1 \rangle]{\langle \Phi_2, \beta_2, \alpha_2 \rangle} \mathbf{I}_2 \xrightarrow[\langle \Phi, \beta, \alpha \rangle]{\langle \Phi, \beta, \alpha \rangle} \mathbf{I}$$

Construction

- Sign and Φ: coequalizer of Φ₁ i Φ₂
- For a given signature Σ ∈ |Sign|, model category Mod(Σ): colimit of diagram, which has vertices:
 - all model categories in I₂ for signatures Σ₂ such that there exists a morphism in Sign from Σ to Φ(Σ₂)
 - all model categories in I₁ for signatures Σ₁ such that there exists a morphism in Sign from Σ to Φ(Φ₁(Σ₁))
 - and some morphisms (...)
- Similarly, Sen(Σ) is a limit of a (diagram as above)^{op}.

Observation

Only when the categories of signatures are small, we can be sure that we will be always able to define a diagram as described above.

・ 同 ト ・ 三 ト ・

Observation

Only when the categories of signatures are small, we can be sure that we will be always able to define a diagram as described above.

Observation

Intuitive duality between morphisms and comorphisms fails when considering limits and colimits.

イロト イ押ト イヨト イヨト

Part III

Relating limits in different categories of institutions

Adam Warski adam.warski@students.mimuw.edu.pl Limits and colimits in various categories of institutions 18/26

3

ъ

- It may be easier to work with morphisms
- It may be easier to work with comorphisms
- Diagrams of institutions may be "inconsistent" include morphisms and comorphisms

Changing morphisms into a span of comorphisms

$$\mathbf{I}' = \langle \mathbf{Sign}_1, \Phi^{op}; \mathbf{Mod}_2, \Phi; \mathbf{Sen}_2, \Phi; \models_2 \rangle$$

Adam Warski adam.warski@students.mimuw.edu.pl Limits and colimits in various categories of institutions 20/26

> < 臣 > < 臣 > <</p>

Changing morphisms into a span of comorphisms

$$\mathbf{I}' = \langle \mathbf{Sign}_1, \Phi^{op}; \mathbf{Mod}_2, \Phi; \mathbf{Sen}_2, \Phi; \models_2 \rangle$$

Why are spans good?

When the comorphisms are treated as relations and combined, they express the same relation as the original morphism.

イロト イポト イヨト イヨト 三油

Limits of diagrams built of spans

- If we change all morphisms into spans in a diagram, its shape changes
- How to construct the limit of diagram of spans, knowing that comorphisms have a certain shape?
- How does this limit correspond to a limit of the original diagram?

Let **Sign** be a limit of a diagram, which is a projection of a diagram of institutions on the categories of signatures.

Flattening

We can alter the diagram of institutions, and change each vertex so that its signature category is **Sign**.

$$\langle \mathbf{Sign}_i, \mathbf{Mod}_i, \mathbf{Sen}_i, \models_i \rangle \rightsquigarrow \langle \mathbf{Sign}, \Phi_i^{op}; \mathbf{Mod}_i, \Phi_i; \mathbf{Sen}_i, \Phi_i; \models_i \rangle$$

Similarly with morphisms; each morphism will have id_{Sign} on the signature coordinate.

イロト イ押ト イヨト イヨト

INSSign

We have created a diagram in the category ${\rm INS}_{\rm Sign}$ — of institutions with a fixed signature category.

- 22

イロト イ押ト イヨト イヨト

INS_{Sign}

We have created a diagram in the category ${\rm INS}_{\rm Sign}$ — of institutions with a fixed signature category.

Morphisms and comorphisms

 $\langle id, \beta, \alpha \rangle \colon \mathbf{I}_1 \to \mathbf{I}_2$ is an institution morphism if and only if $\langle id, \beta, \alpha \rangle \colon \mathbf{I}_2 \to_{co} \mathbf{I}_1$ is an institution comorphism.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

INS_{Sign}

We have created a diagram in the category ${\rm INS}_{\rm Sign}$ — of institutions with a fixed signature category.

Morphisms and comorphisms

 $\langle id, \beta, \alpha \rangle \colon \mathbf{I}_1 \to \mathbf{I}_2$ is an institution morphism if and only if $\langle id, \beta, \alpha \rangle \colon \mathbf{I}_2 \to_{co} \mathbf{I}_1$ is an institution comorphism.

Corollary

 $INS_{Sign} \cong (coINS_{Sign})^{op}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

What does "flattening" a diagram give us?

Translations:

- limit of the flattened diagram \Rightarrow limit of the original diagram
- co-limit of the flattened diagram ⇒ limit of a diagram of spans
- (co-limit of the flattened diagram == limit of the flattened co-diagram)

What does "flattening" a diagram give us?

Translations:

- limit of the flattened diagram \Rightarrow limit of the original diagram
- co-limit of the flattened diagram ⇒ limit of a diagram of spans
- (co-limit of the flattened diagram == limit of the flattened co-diagram)

Observation

Easy construction of limits of diagrams of spans without much additional trouble.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Relating limits in INS and limits of spans in coINS

Suppose that:

- I is the limit of a diagram D in INS
- I" is the limit of a diagram of spans of D in coINS

▲□→ ▲ 三→ ▲ 三→

Relating limits in INS and limits of spans in coINS

Suppose that:

- I is the limit of a diagram D in INS
- I" is the limit of a diagram of spans of D in coINS Intuitively.
 - I is the "most complex" institution
 - I" is the "simplest" institution
 - institution morphism shows how a more complex institution is built over a simpler one

Hence, there may be a morphism from I to I''.

Suppose that:

- I is the limit of a diagram D in INS
- I" is the limit of a diagram of spans of D in coINS tuitively.

Intuitively,

- I is the "most complex" institution
- I" is the "simplest" institution
- institution morphism shows how a more complex institution is built over a simpler one

Hence, there may be a morphism from I to I''.

Fact

Using flattened diagrams, it is easy to build one morphism for each component of the graph.

ヘロト ヘアト ヘヨト ヘ

Thank you

Questions?

Adam Warski adam.warski@students.mimuw.edu.pl Limits and colimits in various categories of institutions 26/26

・ 同 ト ・ ヨ ト ・ ヨ ト