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1 Introduction

The theory of institutions, first introduced by Goguen and Burstall in 1984
([GB83,GB92]), quickly gained ground and proved to be a very useful tool to
construct and reason about logics in a uniform way. Since then, it has found many
applications and has been widely developed. An institution is a formalization of
a logical system—for example, we can build an institution of equational logic or
first order logic.

There are two main ways of moving between institutions, using either institu-
tion morphisms or comorphisms. Informally, morphisms express how a “richer”
institution is built over a “simpler” one; comorphisms express a relation going
the other way round: how a “simpler” institution can be encoded in a “richer”
one. These intuitions hint at some duality between the two concepts. Various
properties of (co)morphisms are presented very thoroughly and systematically
in [GR02]. Taking morphisms or comorphism, we can build two categories: INS
and coINS, with institutions as objects.

In this article, I am going to analyse some of the relationships between limits
and colimits of diagrams built from institutions linked by morphisms and co-
morphisms, as well as show the constructions of those limits and colimits. Even
though morphisms and comorphisms may seem to be dual concepts at first, uni-
versal constructions associated with morphisms and comorphisms turn out to be
rather different.

The main motivation behind this work takes source in heterogeneous specifi-
cations [Mos02b,Tar00], which are built over a number of institutions linked with
morphisms or comorphisms. It is sometimes important to have the underlying
diagram of institutions represented in a uniform way, using only morphisms or
only comorphisms; hence the need to translate one into another. One way to
do that is by transforming a morphism into a span of (co)morphisms (or vice
versa), as introduced for example in [Mos02b]. Also, given such a diagram, it
may be useful to represent a family of models of a heterogeneous distributed
specification, or specifications themselves in an institution, which combines the
institutions involved. Limits/colimits of institutions haven’t proved to be the
best tool for “putting institutions together” (see for example [GB85,Paw95]),
however it may be suitable to use them as concise representations of institu-
tions diagrams. This approach is different from the one taken by, for example,
Mossakowski ([Mos02a,Mos06]) and Diaconescu ([Dia02]), where, given a dia-
gram, the corresponding Grothendieck institution is built. Using this technique,



institutions are put into one, essentially “side by side”, without much interac-
tion. We are after a more compact representation, where some combination of
signatures, models and sentences of the institutions involved takes place. One of
the constructions to consider, when pursuing such a goal, is the construction of
limits and colimits of diagrams of institutions.

Now comes the question: how do (co)limits of diagrams relate to (co)limits
of diagrams built by replacing each morphism by a span of comorphisms? (Or
each comorphism by a span of morphisms.) Here, we will show what the answer
is for the case of limits. When morphisms are replaced by spans of comorphisms,
the shape of the diagram changes. Hence the “procedure” for constructing limits
changes as well; even though the new morphisms are of a special form. In general
it seems there is no simple and straightforward way to translate between lim-
its/colimits of the two diagrams, which shows that morphisms and comorphisms
are not entirely dual.

All proofs of correctness of constructions and of theorems are left out. They
are available in [War07].

2 Definitions

This section presents definitions used later in the article: of institutions, institu-
tion morphisms and comorphisms and various institution categories. Examples
of these concepts can be found in [GB83], [GR02], [ST88] and many other papers
dealing with institutions.

Definition 1. An institution I = (Sign, Mod, Sen, =) consists of:

— a category Sign of signatures,

— a functor Mod: Sign®” — Cat, which assigns to each signature a category
of models. Cat is a category of “all” categories and functors between them,
a functor Sen : Sign — Set, which assign to each signature a set of sen-
tences,

for each signature X € |Sign|, a satisfaction relation Ex C [Mod(X)| x
Sen(XY),

Such that for each signature morphism o: X — X', sentence p € Sen(X) and
model m’ € |Mod(X")|, the satisfaction condition holds (SC):

m' s Sen(o)(¢) < Mod(o)(m') Ex ¢.
The following notations are used: o () stands for Sen(o)(¢) and m/|, stands

for Mod(o)(m').
The satisfaction condition takes then the form:

m' s o(p) <= m/|-=x @

Definition 2. An institution morphism p: I — I, u = (D, «, 3), where I =
(Sign,Mod, Sen, |=) and I’ = (Sign’, Mod’, Sen’, =’} consists of:



— a functor between signature categories @: Sign — Sign’
— a natural transformation between model functors a: Mod — (9°7);Mod’
— a natural transformation between sentence functors (3: ®;Sen’ — Sen.

Also here, the satisfaction condition must hold, for each signature X € |Sign|,
sentence ¢' € Sen’(P(X)), and model m € |Mod(X)|:

m s Be(¢) <= as(m) Fpx) ¢

Note that the domain of the sentence functor is a “re-indexed” sentence
functor of the institution I’, and the codomain is the sentence functor of I.

Intuitively, the institution I is more complicated than the institution I'. A
morphism between them shows how I is built upon I'.

Definition 3. An institution comorphism p: I —., I, p = (P, o, B), where we
have I = (Sign, Mod, Sen, |=) and I’ = (Sign’, Mod’, Sen’, =') consists of:

— a functor @: Sign — Sign’
— a natural transformation a: ($°7);Mod’ — Mod
— a natural transformation (3: Sen — @;Sen’

such that for each signature X € |Sign|, sentence ¢ € Sen(X) and model m’ €
|[Mod' (®(X))| the satisfaction condition holds:

m' g5 Bo(p) <= as(m') Fx .

Intuitively, p is a representation of institutions—it shows, how a simpler
institution can be embedded into a richer one. Institution comorphisms were
first introduced under the name “simple maps of institutions” by Meseguer, and
as “representations” by Tarlecki in [Tar95].

Definition 4. Having institutions and morphisms between them, we can build
a category of institutions INS.

— Objects: institutions

— Morphisms: institution morphisms as defined in Def. 2.

— Identities: morphisms id = (idsign, {dMod, {dSen) -

— Composition: a composition of a morphism uy: 1 — I’ with a morphism
po: I — 1" is a morphism p = py;us: I — 17, where for uy = (@1, a4, 51),
o = (Pg, g, Bo) we define p = (P, «, )

D = D1;D, : Sign — Sign”
a=a;((#77) - az) : Mod — (®1;8,)°?;Mod”
B=(P1-B2);if1  :P1;P2;Sen” — Sen

Here - is the horizontal composition of natural transformations, and ; is the
composition of functors or the vertical composition of natural transformations
(depending on context). It is easy to check that the definition of identities is
correct, that composition is associative, and that u is indeed an institution mor-
phism.



Definition 5. Using comorphisms instead of morphisms we can also build an-
other category of institutions, coINS.

— Objects: institutions

— Morphisms: comorphisms of institutions, as defined in Def. 3.
Identities: comorphisms id = (idsign,; idMod; idsen) -

Composition: composition of a comorphism p1: 1 — 1" with a comorphism
po: I = 1" is a comorphism p = p1;p2: 1 — 1", where for p1 = (P1, a1, (1),
p2 = (P2, iz, Ba) we define p = (P1;Dq, B15(P1 - f2), (P17) - az);a1).

Again it is easy to check that coINS is a category.

Definition 6. Categories of institutions sINS and scoINS are full subcate-
gories of, respectively, INS and coINS, where objects are only those institutions,
in which signature categories are small (objects and morphisms of the signature
category form a proper set).

Definition 7. Categories of institutions INSg;gn and coINSg;gy, (with a fixed
signature category), where Sign € |Cat| is an arbitrary category are sub-
categories of, respectively, INS and coINS, where objects are all institutions
with a fized signature category Sign, and morphisms are all institution mor-
phisms/comorphisms, in which the functor between signature categories is an
identity.

Definition 8. The signature-projecting functor C: INS — Cat is defined as
follows
— C(I) = Sign, for each institution I = (Sign, Mod, Sen, =)
— C(p) = @, for each institution morphism p: I — I’ € INS, where p =
(D, a0, 3).
This is a functor which projects an institution on its signature category. We
can also define an analogous functor with domain coINS.

3 Limits in INS

As mentioned in the introduction, diagrams of institutions often appear in het-
erogeneous specifications [Mos02b,Tar00]. One way of compactly representing
such diagrams is by considering their limits.

Theorem 9. The category INS is complete.

This result is well-known, and the proof can be found for example in [Tar85].
However, the construction given there proceeds rather indirectly in several quite
involved steps. Instead, here we give an explicit construction directly in terms
of institutions and their morphisms in the diagram, thus offering a better “feel”
and direct handle on the result. Here we will describe the construction of arbi-
trary limits; to do that it is enough to construct products of an arbitrary family
of categories and equalizers of any two morphisms ([Mac71, Ch. V]). The con-
structions are easy and are done in a component-wise manner; the construction
of model categories and sentence sets on each signature doesn’t depend on the
overall structure of the signature category.



3.1 Products in INS

For a given family of institutions, I, € |INS|, j € J, where J is a set of in-
dices and I; = (Sign;, Mod;, Seny, |=;), we define a product of this family, an
institution I = I;¢s1;.

— Sign = Il ;Sign; is a product of categories:

e objects are functions £: J — ;¢ ; [Sign,|, such that £(j) € [Sign;| for
jeJ.

e morphisms between ¢ and & are functions x : J — HjjeJ Sign;, such
that x(j): £(j) — €/(J) in Sign,.

— Mod(§) = IIje;Mod,(£(4)) for € € |Sign| (product of categories)

— Mod(x) = x™°¢, where the functor x"™°¢: Mod(¢') — Mod(¢) is defined
as follows: x™°4(m’)(j) = Mod,(x(5))(m’(5)), for x: £ — ¢ in Sign, j € J
and m’ € [Mod(¢’)| (analogically for model morphisms).

— Sen(§) = W, Sen;(£(j)) (coproduct of sets, its elements are pairs (g, j),
where j € J and ¢ € Sen;(£(5))).

— Sen(x) = x°¢", where x*°" : Sen({) — Sen(¢’) is defined as follows:
X*"((p, 7)) = (Sen;(x(j))(#),J), for x : & — ¢ in Sign, j € J and
o € Sen; (¢(7)).

— satisfaction relation |=¢ for { € |Sign|, m € |[Mod(¢)|, j € J and ¢ €

Sen;(£(5)): m ¢ (p,7) <= m(j) ):é(j) v

The projections 7;: I — I; for j € J are defined in a straightforward way,
™ = (Pj, a5, B5):

= 4(§) = €07)
— a;(&)(m) = m(j), for m € Mod(¢)| and similarly for model morphisms
= Bi(€)(¢) = (#,4), for ¢ € Sen;(£(3))

Lemma 10. o and 3 are natural transformations and m; for j € J are institu-
tion morphisms.

Lemma 11. Il;c 1; with projections w; for j € J is a product of institutions
L forjeJ.

3.2 Equalizers in INS

Given two “parallel” institution morphisms puq, po : It — I, we define their
equalizer p: I — I, with domain I = (Sign, Mod, Sen, |=).

Sign is the subcategory of Sign,; such that X € |Sign| < ¢1(X) = $2(X)
and o € Sign(X,Y’) <= &1(0) = $2(0). The functor ¢: Sign — Sign, is the
inclusion. Hence, @ is an equalizer of 1, @o: Sign,; — Sign, in Cat.

For X' € |Sign|, Mod(X) is the subcategory of Mod;(®(X)) = Mod;(XY),
such that

m € |[Mod(X)| <= a1(X)(m) = az(X)(m)
h € Mod(X)(m,m') <= a1(X)(h) = az(X)(h).



For o: ¥ — X', Mod(0) = Mod; (0)|mod(x) (functor domain restriction).

For X' € |Sign|, let Sen(X) = Sen; (#(X))/=5x = Sen;(X)/=5, where =5,
is the smallest equivalence relation such that 81 (X)(¢) =5 B2(X)(p) for all
¢ € Seny(P1(X)). The full relation satisfies this condition, and an intersection
of two relations satisfying this condition also satisfies it, hence a smallest relation
exists.

For o: ¥ — X' and [¢]=,, € Sen(X), we define:

Sen(o)([¢]=5) = [Seny (2(0))(¥)]=,., = [Seny(0)(¥)]=,, -

Remark 12. The above definition is correct, that is, it does not depend on the
choice of .

Hence Mod(X) with inclusion a(X): Mod(X) — Mod; (X) is an equalizer
of functors a1 (X) and ay(X) between categories Mod;(X) and Modz (P4 (X))
(the choice of @1 or @5 is not important, as ¢1(X) = $3(X) from the con-
struction of the signature category), and G(X) is a coequalizer of 51 (X)), B2(X):
Seny(P1(X)) — Sen; (X).

The satisfaction relation for X' € |Sign| is defined as follows:

m =y [Y]=, <= for each ¢/ € []=,.,m % 1.

Lemma 13. A morphism p: I — Iy defined as: p = (P, «, B), where (X)) =
]z for X € |Sign| is an institution morphism.

Lemma 14. p is an equalizer of p1 and po.

4 Colimits in INS

Another way of combining institutions in a diagram is taking its colimit. Dually
to limits, to construct a colimit it suffices to show the construction of coproducts
and coequalizers (see [Mac71, Chap. V]). However, colimits of arbitrary diagrams
of institutions connected by morphisms do not always exist, because it is not
always possible to construct a coequalizer of two morphisms. A counter example
can be found in [GR02, Ex. 4.10].

However, the problems are purely set-theoretical. If we restrict our attention
only to institutions, in which signature categories are small (in typical examples
it is enough to restrict the alphabet of symbols used to build operation names),
we will get the following result.

Theorem 15. The category sINS is cocomplete.

This result is also not new, and is mentioned for example in [GR02] and
proved in [Ros99]. However again, no direct and explicit constructions are given
there.

Below the constructions of coproducts and coequalizers are briefly described.
It is relatively easy to construct coproducts (the construction is dual to the
construction of products in INS) but the construction of coequalizers is much
harder. Here, as opposed to limits, the constructions of model and sentence
functors heavily depend on the overall structure of the signature category.



4.1 Coproducts in INS

For a given family of institutions I;, j € J, where J is a set of indices, we define
its coproduct, an institution I = W;e s1;.

— Sign = U icsSign; is a coproduct of categories:

. obJects are pairs (X, j), where j € J and X' € |Sign,|.

e morphisms are pairs (o, j): (X, j) — (X', j), wherej € Jand o: ¥ — X’
is a morphism in Sign;; for j # j', there are no morphisms between
(Z.j) and (', ).

~ for (¥} € |Sign|, Mod((Z, j)) = Mod, (%), Sen((Z, j)) = Sen; (%)

— for (o, j) € Sign, Mod((o, j)) = Mod,(c )7 Sen((c,j)) = Sen;(o)
satisfaction relation: for a signature (Z’ 7, model m € |Mod({(X,5))] =

|Mod;(X)| and sentence ¢ € Sen((X,j)) = Sen;(X), m s ;) ¢

m =L e
The inclusions ¢;: I; — I, v; = ($;, oy, 8;) for j € J, are defined as follows:

D;(X) = (X,7), aj(¥) = idmod, (x) and B;(L) = idsen,(x)-

Lemma 16. o and (8 are natural transformations and v; for j € J are institu-
tion morphisms.

Lemma 17. T with inclusions v; for j € J is a coproduct of institutions I;, for
jed.

4.2 Coequalizers in sINS

Given two “paralle]” morphisms 1, po: I — Iy (I, Iy € [SINS|, we will define
their coequalizer p: Is — I. The following construction is inspired by [TBGI1,
Ch. 3, Ex. 4], and coincides with the construction of a left Kan extension in a
category of functors with a fixed codomain ([Mac71, Ch. X], [Ros99]).

Sign is the domain of a coequalizer of functors @, @: Sign, — Sign,. The
construction of coequalizers in Cat can be found in [MB99]. It is a bit more
complicated then in Set, but they are roughly analogous. Objects in Sign are
equivalence classes of the smallest equivalence relation = C |Sign,| x |Sign,|
such that for all X' € |Sign,|, &1(X) = P2(X). Morphisms can be defined in a
similar way.

Let X' € |Sign| be an arbitrary signature. We define a graph Gy as follows:

— nodes:
o (X1, f,1), where ¥ € |Sign,|, f: ¥ — &(P1(X1)) in Sign (choosing
@1 or &5 does not matter, because from the construction of & we have
D1;P = $y;P).
o (X9, f,2), where X5 € [Sign,|, f: ¥ — @(X5) in Sign

— edges:
b
P
&(m)

P(X) P(X3)




o m: (X, f,2) — (X}, f',2), where m: X} — X5 in Sign,, is such that
fh@(m) = f.

o (n;ym): (X, f,1) = (X5, f,2),i=1,2, m: X}, — &;(X) in Sign,, is
such that f/;®(m) = f. 0O

Informally, all of the above nodes are needed so that we can define the model
functor on signature morphisms. The first type of edges (“m”) is needed to ensure
that the resulting construction will be universal; and finally the “(n;,m)” edges
are there so that the construction will have the coequalizer property.

Remark 18. Note that only when the category Sign is small, we can be sure
that we will be able to define the graph G (with a set of nodes and edges). This
is provided by the fact that when both Sign, and Sign, are small categories,
Sign is also a small category.

Next, we define a diagram Dy : Gy — Cat as follows:

— Dx((Xs, f,2)) = Moda (%)
~ Dx((&1,£,1)) = Mod, (%))
— Dy(m) = Mods(m)
— Dx((ni,m)) = a;(X1);Modz(m), where (n;,m): (X1, f,1) — (X5, f',2). O
o X — X
Mod(s) - — - -Modl) ,;7 Mod(%)
7
15 //
7y
gs / 9=
7y
s
7y

DE/:GLv—>Cat L» DE:GE—>Cat
“subgraph”

Let Mod(X) be a colimit of the diagram Dy in the category Cat. The in-
jection (functor) of Dx((X;, f,4)) into the colimit Mod(X) we will denote by
g7 h  Mod, (%) — Mod(X), i = 1,2.

Let 0 : ¥ — X’ be an arbitrary morphism in Sign. We define Mod on
this morphism. Firstly, we build a cocone for the diagram Dy, with a vertex
Mod(X). Injections into this cocone will be denoted by kg,;’f’” : Mod; (X)) —
Mod(X). The graph G5 is a “subgraph” of G x: each node of the form (X7, f, )
in Gy has a corresponding node (X7, 0;f,7) in G x; moreover, the values of the
two nodes and of any edges between corresponding nodes (in Gy-) are identical
in diagrams Dy and Dy,. Hence, if for an injection into the cocone’s vertex
from the value of a node (X!, f,i) we take k‘(EZ,;’f’Z> = ggzg’gf’l>, we will get a
cocone over Dy with a vertex in Mod(X). Let Mod(c): Mod(X') — Mod(X)



be the unique morphism (which exists, as Mod(X") is a colimit of the diagram

D) such that for all nodes (X7, f,7) in Gy (and corresponding nodes in Gy):
X0 fi X fi Xioif i

g<217,f >;M0d(0)=k<2, f >:g<2 o >.

Lemma 19. Mod: Sign®” — Cat is a functor.

We then define the transformation a.: Mods — #;Mod, let X5 € |Sign,|:
a(5) = g5 5 : Moda(£2) — Mod((53)).

The sentence functor Sen is defined in similar way; for X' € |Sign|, Sen(X)
is a limit of a diagram Eyx : GY¥ — Set, which is defined similarly as above.
Also, Sen is extended to a functor analogously. The projections on the value
of a node (X, f,i) in G$¥ will be denoted by hg"”cﬂ) : Sen(X) — Sen;(X;).
The transformation 3: #;Sen — Seny is defined on Y5 € |Sign,| as: B(X3) =

h(227idq>():2)72)
P(Z2) )

Lemma 20. « and (8 are natural transformations.

The satisfaction relation in I is defined, for X € |Sign|, m € |[Mod(X)| and
¢ € Sen(X), as follows:

Yo, f,2
m s o <= ms L b5 (),

where ms € |[Moda(X3)| is such, that g<222’f’2> (mg) =m.
Lemma 21. The required ms always exists, and the definition of the satisfaction
relation is independent of the choice of ms.

5 Limits and colimits in coINS

Similar results hold for the category coINS. The constructions are much like
the ones presented above. Like the results on completeness and cocompleteness
of INS and coINS, these theorems have also been known to be true before
([GR02,?]), but I have not found explicit constructions. Again, the category
coINS is not cocomplete, for a reason analogous to INS not being cocomplete.

Theorem 22. The category coINS is complete.
Theorem 23. The category scoINS is cocomplete.

6 The categories INSg;e, and coINSg;gy

Categories of institutions with a fixed signature category exhibit some interesting
properties. In particular, as the category of signatures does not change, there is
no significant difference between a morphism and a comorphism, and, moreover,
the construction of a colimit of a diagram is as easy as the construction of a
limit. Also, the constructions of limits and colimits in INSgjgn and coINSg;gn
can be used to construct limits of diagrams in INS and coIINS.



6.1 Limits and colimits

The construction of an equalizer of two morphisms in INSg;gn is exactly the
same as in Sect. 3.2, as it easily follows from that construction that the signature
category of the domain of an equalizer will be equal to Sign.

To construct products in INSgjgn, we need to make a slight change to the
construction presented in Sect. 3.1, by making a requirement that the signature
category of the product must be Sign, and not Sign x Sign. However it’s the
only change, and the rest of the construction remains the same.

Analogously, we can define products and equalizers in coINSgjgn. Thus, we
get:

Theorem 24. The categories INSsign and coINSgign are complete.

Moreover, let’s consider an arbitrary morphism p: I — I’ in INSg;gn, where
p = (idsign,®, (). It is easy to check, that p: I' — I, p = (idsign, @, ), is an
comorphism in coINSg;ey, (in fact, we can change a morphism into a comorphism
using such a technique whenever the functor between signature categories has a
left adjoint, see [AF95]). More formally:

Fact 25. pu: I — I, where 1 = (idsign, @, ) is an institution morphism if and
only if p: ' — I, p = (idsign, @, 3), is an institution comorphism.

Corollary 26. INSgign = (coINSgign)?”.
It easily follows from Thm. 24 and Cor. 26 that:

Theorem 27. The categories INSgign, and coINSgign are cocomplete.

6.2 “Flattening” a diagram in INS to a diagram in coINS

Suppose we have a diagram D: G — INS, which has nodes I, I; for i, j € |G/,
and morphisms py; ;: I; — I, for k € K; ;, where K; ; is a set of indices. For
notational convenience, the coordinate k& will be omitted.

Let Sign and morphisms @; : Sign — Sign, be a limit of the diagram
D;C: G — Cat (see Def. 8).

Given D, we build another diagram D’: G — INSgign, with nodes I'; and
morphisms between them pj ;: I'; — T';.

Each node I; = (Sign;, Mod;, Sen;, |=;) in diagram D we change to a node
I’; in D’ with the signature category Sign in the following way:

I'; = (Sign, &;”;Mod;, §;;Sen;, b;;="),

where @;;=" is a relation that for X' € |Sign| is equal to ):Z‘bi(x)'
It is easy to check that the satisfaction condition in I’; holds.
A morphism p; ; = (P j, i j, Bi,;) in D is changed to a morphism in D":

1 5 = (id, &7 - i j, Qi - Bi 5)-



This definition is correct, as from the construction of Sign we have ¢;;9; ; = @;,
hence:

D7 -y 07" Mod; — @77:®":Mod; = ¢7";Mod,,
and similarly for 8. The satisfaction condition for that morphism holds, which
follows immediately from the satisfaction condition for p; ;.

For the diagram D": G — INSgign we can construct a limit, as it is described
in Sect. 6.1, which will be denoted as I = (Sign, Mod, Sen, =), where Mod :
Sign? — Cat, Sen: Sign — Set. We also get projections p} = (id, o, 5;) :
I — I’;, with natural transformations «; : Mod — Mod’; and (3;: Sen’; — Sen.

6.3 Translating a limit of the “flattened” diagram to a limit of the
original diagram
Having a limit I of D’ it is easy to construct a limit of D:

I = (Sign,Mod, Sen)

wh={(id,ci,B:) (id,aj,B5) =

, . op (id, 7 s 5, BB ) . .
I'; = (Sign, $;”;Mod;, ¥;;Sen,) (Sign, sbjp;Modj,@j;Senj) =T;
4

I = (Sign,Mod, Sen)

wi=(Pi,ai,f:) (Pj,05.05)=p;

. Di, i 5,0
I, = (Sign;, Mod;, Sen;) — opeigBig) (Sign;, Mod;, Sen;) = I;

For each node, we get a morphism p; : I — I; by taking a functor project-
ing Sign on Sign, and natural transformations from the projections in D’: p; =
(D;, i, ;). From the definitions of “flattening” a node the natural transforma-
tions a; and f3; are such, that: a;: Mod — @7”;Mod; and £3;: &;;Sen; — Sen.
It is easy to check, that p; is an institution morphism. It is not quite trivial to
verify that I with projections p;: I — I; is in fact a limit of D.

Theorem 28. The institution I with projections u;: 1 — 1; is a limit of diagram
D.

A construction similar to the one presented above can be found for example
in [TBGI1, Ch. 4, Lem. 2].

7 Changing morphisms into comorphisms

When examining the definitions of morphisms and comorphisms (2, 3), one can
see some duality between the two concepts. It would also be useful to have a way



of representing morphisms as comorphisms and vice versa. Also, in specific dia-
grams morphisms and comorphisms may coexists, and it is easier to reason about
a diagram if it has only one type of morphisms. One way, described for example
in [Mos02b,Mos06] is to replace a morphism with a span of comorphisms. It is
also possible to represent a comorphism as a span of two morphisms. However
below we will concentrate on the former, as the category coINS appears to be
the most suitable for investigating the properties of heterogeneous specifications
([Mos02b]).

7.1 Spans of comorphisms

Suppose we have an institution morphism: pu: Iy — I = (P, «, 3). We define an
“intermediary” institution I’ = (Sign,, #°?;Mods, $;Sen,, ;=2), which con-
sists of a category of signatures from the first institution, and sentence and
model functors from the second institution (here, ®;=? is a relation, which for
XY € |Sign,| is equal to ):é(z)).

It is easy to check that this definition is correct. We can also define two
morphisms, g1 : I1 — I’ and ps : I' — I, where pu; = (id,«,8) and ps =
(D,4id,id), which are such that pi;ue = p.

Morphism, in which the functor between signature categories is an identity,
can be easily changed to comorphism (Fact 25). Moreover, starting with a mor-
phism, in which the natural transformations between model and sentence func-
tors are identities, we can easily build a comorphism: it will consist of exactly
the same parts (but with the identity natural transformations considered in the
“opposite” direction). The domain or codomain of the morphism doesn’t change
either. Hence, having a morphism, we can build a span of two comorphisms.

Thus, if we have a morphism: I (28 I, we can change it to a pair of mor-

) (id,a,B) -, (®,id,id) . . .
phisms: I; " —3"T " =" Iy and next to a pair of comorphisms, “reversing”

id,or, &,id,id
the first, and leaving the second without any changes: I; SO 2.8 T <—1>éo) L.

Informally, a span of comorphisms expresses “the same” relation between insti-
tutions, as the original morphism.
In a very similar way we can change a comorphism into a span of morphisms.

8 Constructing limits of diagrams with each morphism
replaced by a span

Having a way of representing morphisms as spans of comorphisms, it is natural
to ask, how do (co)limits of diagrams of institutions correspond to (co)limits of
diagrams, in which each morphism has been changed into a span of comorphisms.
As the comorphisms used in the spans that replace institution morphisms are
quite specific (contain many identities), in the case of limits there exists an easy
way to construct them for diagrams obtained in such a way.

Consider a diagram D: G — INS of institutions and their morphisms./



8.1 “Flattened” diagrams and spans

Suppose we “flatten” D to a diagram D’ as in Sect. 6.2, where also the category
Sign is defined. We construct new diagrams:

— diagram coD: coG — coINS, is a diagram D, in which each morphism has
been changed to a span of comorphisms

— diagram D”: G°? — coINSg;jgy, is a diagram D’, in which each morphism
has been changed to a comorphism (as in fact 25); its vertices are institutions
I} (“flattened” institutions I;).

The institution that is the vertex of the limit of the diagram D" will be
denoted by I” = (Sign,Mod”,Sen”, =), with projections p/ : I — I'; =
(id, o, BY) for i € |G.

From a limit of the diagram D’ we can easily get a limit of the diagram coD:

1” = (Sign, Mod”, Sen”)

(id, D i ;B3 Bi ) §
I'; = (Sign, #;";Mod;, ¥;;:Sen;)  +=———————=  (Sign, 27" Mod;,®;;Sen;) =T';

¢

1" = (Sign, Mod”, Sen”)

(el 5) NP5l 8 =ps

co

I, = (Sign;, Mod;, Sen;) (Sign;, Modj, Sen;) = I;
co co
(idai j8:.5) (@.id,id)

co
(Sign;, @f’; :Mod,;, ®; j;Sen;),

where we put p;: 1" — I, = ($;, o, 3, for i € |G|.

Theorem 29. The institution and comorphisms constructed above are a limit
of the diagram coD.

8.2 Relations between limits of diagrams and limits of diagrams of
spans

So, we can construct a limit of a diagram of institutions and institution mor-
phisms, and a limit of a diagram, in which each morphism has been replaced
by a span of comorphisms. The natural question is how much the two limits are
related. Informally, the limit of the original diagram in INS is an institution
that is “richer” than all the institutions in the diagram, while the limit of this
diagram in coINS is “poorer” then all institutions in the diagram. Moreover, an
institution morphism “represents” a richer institution in a simpler one, so, if a
relation exists, it can be in the form of a morphism from I to I” (or a comorphism
from I"” to I).



It is the case that such a morphism always exist, and in some diagrams there
can be many of them. We can build one morphism from I to I” for each node
of the diagram, but morphisms built for vertices connected by any path in the
graph turn out to be the same. Hence, we can build one morphism for each
connected component of the graph. Of course, some of them may turn out to
coincide—but only in specific cases.

Fact 30. For each node i € |G|, (id, ;o , 3750;) : T — 1" is an institution
morphism. Moreover, from fact 25, for each node i € |G|, (id, a0, B0
1" — 1 is an institution comorphism.

Fact 31. For vertices i,j € |G| connected by any path in the graph we have:
<Zd7 ai;a;/a z,/’/Bl> = <Zd7 aj;ag‘lv ;/7/8]>

9 Conclusions and further work

In this paper, the constructions of limits and colimits in categories of institu-
tions have been presented; the results on completeness and cocompleteness of
these categories have been known before, however the proofs did not show direct
constructions. Explicit constructions are needed when these theorems are to be
apllied to a specific diagram of institutions.

Moreover, as the constructions of limits and colimits turn out to be rather
different, it seems that institution morphisms and comorphisms are not dual
concepts, as a first intuition may suggest.

The properties of diagrams of institutions with a fixed signature category
are also presented, as well as means of translating an arbitrary diagram to a
diagram with a fixed signature category, and the relations between the two dia-
grams. The final part of the article describes some connections between limits of
diagrams with morphisms, and limits of diagrams in which each morphism has
been changed into a span of comorphisms.

What remains to be investigated, is the possible relation between (co)limits
of diagrams of institutions and corresponding Grothendieck institutions, as well
as how these results apply to specification theory.
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