How functional is direct-style?

Adam Warski
warski.org

o "[JIl, SOFTWAREMILL

http://warski.org

PART |

What is Functional
Programming?

Functional Programming:

a paradigm where programs are
constructed by applying and
composing functions

Wikipedia

Traits of "functional" approach Non-traits of "functional” style

Higher-order functions Loops
Functions as first-class values Code duplication
Expressions Statements
Immutable data Mutable data
Effects as values Immediate effects
Function composition Imperative steps
Data & behaviour separate Data & behaviour combined

What is a function?

"casual" FP "oure" FP
« a callable unit of software » 1: D = C, tfor each x € D, exactly
one f(x) e C
- well-defined interface & behaviour « idempotent

« can be invoked multiple times . effect-free

Functionfullness

% of FP

Spaghetti Clean code
code (small methods) »

-
l~. ‘4
-
L] -
.. -
- —’
L -
.....

Casual FP Pure FP

higher-order functions
ADTs, immutable data
expression-oriented

+ + + +

var users = new ArrayList[User] ()
for 1d <- peoplelds do

users.add (fetchFromDb (i1d))

var likes = new ArraylList[Response] ()
var dislikes = new ArraylList[Response] ()
for user <- users do
val response = sendRequest (user)
1f response.body.likedSciFiMovies
.contains ("Star Wars")
then likes.add(response)

else dislikes.add(response)

peoplelds
.map (fetchFromDb)
.map (sendRequest)
.map(.body.likedSciFiMovies)
.partition(.body

.li1kedSciFiMovies

.contains ("Star Wars"))

peoplelds
.traverse: 1d =>
fetchFromDb (id)
.flatMap (sendRequest)
.map(.partition(.body
.likedSciFiMovies

.contains ("Star Wars")))

Whatis FP?

Casual FP Pure FP

Composing functions

Light syntax for lambdas

Higher-order functions #& No mutation
Immutable data types #& No side effects
ADTs + pattern matching #& All computations are lazy

Expression-oriented

Functional standard library

Separate data & behavior

26

What is functional programming

There are two different definitions of "functional programming" in common use today:

The older definition (originating from Lisp) is that functional programming is about
programming using first-class functions, i.e. where functions are treated like any other value so
you can pass functions as arguments to other functions and function can return functions
among their return values. This culminates in the use of higher-order functions such as map
and reduce (you may have heard of mapReduce as a single operation used heavily by Google
and, unsurprisingly, it is a close relative!). The .NET types System.Func and System.Action
make higher-order functions available in C#. Although currying is impractical in C#, functions
that accept other functions as arguments are common, e.g. the Parallel.For function.

The younger definition (popularized by Haskell) is that functional programming is also about
minimizing and controlling side effects including mutation, i.e. writing programs that solve
problems by composing expressions. This is more commonly called "purely functional
programming". This is made possible by wildly different approaches to data structures called
"purely functional data structures". One problem is that translating traditional imperative
algorithms to use purely functional data structures typically makes performance 10x worse.
Haskell is the only surviving purely functional programming language but the concepts have
crept into mainstream programming with libraries like Ling on .NET.

Part 1l

What is Direct Style?

Building a Direct-Style Stack

m First step: Boundary/break

m Error handling

m Suspensions

m Concurrency library design built on that

P> P| o) 408/3348

 Direct style is the opposite of continuation-passing style and a control
monad

Direct-style

» Results of effectful computations are available directly

« Not wrapped witha Future, Promise, IO Or Task

 (by default)

- Avoiding continuations
« as callbacks

« as monadic wrappers

- How to: continuations + direct syntax?
But!

« Kotlin’s coroutines

We need continuations for . Java's VirtualThreads
performance . Unison Abilities
« OCaml's EIO
let send_response socket = -

Eio.Flow.copy_string "HTTP/1.1 200 OK\r\n" socket;
Eio.Flow.copy_string "\r\n" socket;

Fiber.yield (); (* Simulate delayed generation of body x)
Eio.Flow.copy_string "Body data" socket

safeDiv3 '{I0, Exception, Store Text} Nat

Eio_main.run @@ fun _ -> :
safeD1v3

send_response (Eio_mock.Flow.make "socket");;
+socket: wrote "HTTP/1.1 200 OK\r\n"
+socket: wrote "\r\n" use Nat / == toText
+socket: wrote "Body data"

— ¢ unit = () use lext ++

a randomNat()
b randomNat()
Store.put (toText a ++ "/" ++ toText b)

b == 0 EXC 10 ric.failure "Oops. Zero" b)
/ b

PART 111

How functional is direct style?

Scala is functional by constructiol

 functions as 1st class values
 higher-order functions
» expression-oriented

« immutable data types / ADTs

We only need to avoid spoiling what we got

Functionality scorecard

Scala + cats-effect / ZIO

Functions as 1st-class values 10 /10
Expression-oriented 4 /5 Scala
Functional std lib 5/5
Applying & composing functions 9/10
Immutable data, ADTs 9/10
based on discipline
No shared mutable state 9/10
Effects as values / no effects 8 /10
Behaviour & data separate 3/5 OO / FP hybrid

57 / 65

Functionality scorecard

Direct-style
Functions as 1st-class values 10 /10
Expression-oriented 4 /5 Scala
Functional std lib 5/5

Applying & composing functions 6/10
Immutable data, ADTs 8/10 based on discipline

No shared mutable state 8 /10
Effects as values / no effects 2 /10 Errors as Eithers

Behaviour & data separate 3/5 OO / FP hybrid

46 / 65

Functionality scorecard

65

48,75

32,5
- .
O

Java Kotlin Rust direct-style Scala cats-effect Scala Haskell

Is direct-style at odds with pure FP (in Scala)?

defer {
» Limited direct-style is possible e S
if (fileA.contains("some string")) {
. . val textB = read(fileB).run
° ZIO'dIreCt write(fileC, textA + textB).run
¥
¢ asynC/awalt fOI’ CatS'effeCt } import cats.effect.IO

import cats.effect.cps._

» Higher-order functions problematic val program: 10[Int] = async[I0] {

var n = 0
var 1 =1

- Unlimited direct-style with pure, monadic FP
. . while (i <= 3) {
seems impossible n 4= 10.pure(i).await

1+=1

There’s more to functional effects

than fibers

The good The bad

#& Error handling *® Syntax overhead
#& Resource management *® Custom control flow
#& Fearless refactoring *? Lost error context
#& Principled interruptions *? Virality
#& High-level concurrency *? Learning curve
#& Streaming

Canwe

Use casual FP
Leverage Java 21's virtual threads

Keep some of the benefits of purely-functional effect systems

?

But avoid some of the problems

® 0 B[] private <

0
0.x

PROJECT INFO

Community & support
Dependency (sbt, scala-cli, etc.)
Project scope

Using Ox with Al coding assistants

BASICS

A tour of ox
Direct style

Error handling

HIGH-LEVEL CONCURRENCY
Running computations in parallel
Race two computations
Parallelize collection operations

Timeout a computation

STRUCTURED CONCURRENCY

0

ox.softwaremill.com e © M +

) Edit on GitHub

OxX <

Safe direct-style streaming, concurrency and resiliency for Scala on the JVM.
Requires JDK 21+ & Scala 3.

To start using Ox, add the com.softwaremill.ox::core:1.0.0-RC2 dependency

to your project. Then, take a look at the tour of Ox, or follow one of the topics
listed in the menu to get to know Ox’s API!

In addition to this documentation, ScalaDocs can be browsed at
https:/javadoc.io.

A tour of ox

Run two computations in parallel:

def computationl: Int = { sleep(2.seconds); 1 }
def computation2: String = { sleep(l.second); "2" }
val resultl: (Int, String) = par(computationl, computation2)

// (1, "2")

Timeout a computation:

https://ox.softwaremill.com/latest/

def computationl: Int = { sleep(Z.seconds); 1 }
def computationZ: String = { sleep(l.second),; "2" }
val resultl: (Int, String) = par (computationl, computation?Z

supervised:
val £l = fork { sleep(Z.seconds); 1 }

N B ~N\ 7S\ VT

useCloseable (new java.lo.PrintWriter ("test.txt")) { writer =>
writer.println("Hello, world!")

Flow.iterate(0) (+ 1) // natural numbers

filter(% 2 == 0)

.map(+ 1)

.lntersperse (5)

// compute the running total

.mapStateful (0O) { (state, value) =>
val newState = state + wvalue
(newState, newState)

}

.take (10)

.runForeach(n => println(n.toString))

The €

 Different constructs for recoverable errors & programming bugs
 |Indication at callsite, where errors might occur

- Recoverable errors part of the type

def lookupUser (1dl: Int): Either[String, User] = 2727
def lookupOrganization (i1dZ: Int): Either[String, Organization] = 2?2727

val result: Either[String, Assignment] = eilther:
val user = lookupUser(l) .ok ()
val org = lookupOrganization (Z) .ok ()
Assignment (user, org)

PArT IV

Direct-style Scala is "casually" functional

(and it’s practical to use!)

Comparing Ox to functional effect systems

The better The same The worse
#& Casual FP W Fearless concurrency *® Pure FP
#& Simple syntax % Streaming *? Principled error handling
#& Lower learning curve % Structured concurrency *? Principled interruptions
#& Exceptions retain context *? Dedicated resource type
#& No virality *® Uniform computations
#& Built-in control flow *? Fearless refactoring

.
®

De
N

Wikipedia on FP « What is FP @ Lambda Days (slides,

Why FP Matters by John Hughes Vile[<Te)

Why FP Doesn’t Matter (Jane Street) » Unwrapping IO @ Scala.lO (slides,

What's FP? @ StackOverflow video)

What's FP. @ Haskell - From Reactive Streams, to Virtual
Threads

Scalar

Notes on structured concurrency by
Nathaniel J. Smith

The error model by Joe Duffy

https://en.wikipedia.org/wiki/Functional_programming
https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
https://www.youtube.com/watch?v=kZ1P8cHN3pY
https://stackoverflow.com/questions/24279/functional-programming-and-non-functional-programming
https://wiki.haskell.org/Functional_programming
https://www.youtube.com/watch?v=0Fm0y4K4YO8
https://www.youtube.com/watch?v=0Fm0y4K4YO8
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://joeduffyblog.com/2016/02/07/the-error-model/
http://www.warski.org/blog/wp-content/uploads/2025/06/what-is-fp.pdf
https://www.youtube.com/watch?v=pnZSff01FYQ
https://adamw.github.io/unwrapping-io/
https://www.youtube.com/watch?v=qR_Od7qbacs
https://github.com/softwaremill/ox-flows-pres/tree/master/src/main/scala/pres
https://github.com/softwaremill/ox-flows-pres/tree/master/src/main/scala/pres

|O.pure("Thank you!")

http://warski.org

